Publications des scientifiques de l'IRD

Branca Antoine, Vavre F., Silvain Jean-François, Dupas Stéphane. (2009). Maintenance of adaptive differentiation by Wolbachia induced bidirectional cytoplasmic incompatibility : the importance of sib-mating and genetic systems. Bmc Evolutionary Biology, 9, p. 185. ISSN 1471-2148.

Titre du document
Maintenance of adaptive differentiation by Wolbachia induced bidirectional cytoplasmic incompatibility : the importance of sib-mating and genetic systems
Année de publication
2009
Type de document
Article référencé dans le Web of Science WOS:000270355700002
Auteurs
Branca Antoine, Vavre F., Silvain Jean-François, Dupas Stéphane
Source
Bmc Evolutionary Biology, 2009, 9, p. 185 ISSN 1471-2148
Background: Bacteria of the genus Wolbachia are reproductive parasites widespread among arthropods. The most common effect arising from the presence of Wolbachia in a population is Cytoplasmic Incompatibility (CI), whereby postmating reproductive isolation occurs in crosses between an infected male and an uninfected female, or when a male is infected with a different strain of Wolbachia to that of the female (bidirectional CI). Previous theoretical models have demonstrated that bidirectional CI can contribute to the genetic divergence of populations in haploid and diploid organisms. However, haplodiploid organisms were not considered in these models even though they include Nasonia parasitoid wasps - the best example of the implication of Wolbachia in ongoing speciation. Moreover, previous work did not investigate inbreeding mating systems, which are frequently observed in arthropod species. Results: We developed a stochastic two-island model which simulated three genetic scenarios, diploidy, haploidy, and haplodiploidy, with two CI phenotypes being considered for the latter: (1) male development of female progeny; and (2) mortality of fertilized eggs. We also investigated the effect of varying the proportion of sib mating. In the model each allopatric population was initially fixed for a single allele at a nuclear locus under positive selection and infected with one strain of Wolbachia. Each simulation presupposed that the two populations were fixed for a different allele and a different strain of Wolbachia. The degree of genetic differentiation observed in the locus under selection due to bidirectional CI was much lower for the two haplodiploid phenotypes than for either diploids or haploids. Furthermore, we demonstrated that sib-mating may compensate for the lower efficiency of bidirectional CI in haplodiploids by maintaining genetic divergence. Conclusion: Our model suggests that maintenance of genetic differentiation facilitated by Wolbachia is more likely to occur in diploids and haploids than in haplodiploids. However, increasing the level of sib-mating may compensate for the weak effect of bidirectional CI in haplodiploids. Our work therefore gives a potential explanation for why the haplodiploid Nasonia species, which are infected with bidirectionally incompatible Wolbachia strains and undergo sib-mating, have differentiated genetically and maintained this differentiation without premating isolation.
Plan de classement
Sciences du monde animal [080]
Localisation
Fonds IRD [F B010048260]
Identifiant IRD
fdi:010048260
Contact