Publications des scientifiques de l'IRD

Sklab Youcef, Castanet F., Ariouat H., Arib S., Zucker Jean-Daniel, Chenin Eric, Prifti Edi. (2025). PlantSAM : an object detection-driven segmentation pipeline for herbarium specimens. Applications in Plant Sciences, [Early access], p. [14 p.]. ISSN 2168-0450.

Titre du document
PlantSAM : an object detection-driven segmentation pipeline for herbarium specimens
Année de publication
2025
Type de document
Article référencé dans le Web of Science WOS:001636902700001
Auteurs
Sklab Youcef, Castanet F., Ariouat H., Arib S., Zucker Jean-Daniel, Chenin Eric, Prifti Edi
Source
Applications in Plant Sciences, 2025, [Early access], p. [14 p.] ISSN 2168-0450
Premise Deep learning-based classification of herbarium images is hampered by background heterogeneity, which introduces noise and artifacts that can potentially mislead models and degrade their accuracy. Addressing these effects is essential to enhance overall performance. Methods We introduce PlantSAM, an automated segmentation pipeline that integrates YOLOv10 for plant region detection and the Segment Anything Model (SAM2) for segmentation. YOLOv10 generates bounding box prompts to guide SAM2, enhancing segmentation accuracy. Both models were fine-tuned on herbarium images and evaluated using intersection over union (IoU) and S & oslash;rensen-Dice coefficient metrics.Results PlantSAM achieved state-of-the-art segmentation performance, with an IoU of 0.94 and a S & oslash;rensen-Dice coefficient of 0.97. Incorporating segmented images into classification models led to consistent performance improvements across five tested botanical traits, with accuracy gains of up to 4.36% and F1 score improvements of 4.15%.Conclusions Our findings highlight the importance of background removal in herbarium image analysis, as it significantly enhances classification performance by enabling models to focus more effectively on the foreground plant structures.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Sciences du monde végétal [076]
Localisation
Fonds IRD [F B010095889]
Identifiant IRD
fdi:010095889
Contact
  • Coordonnées :
    Mission Science Ouverte (MSO)
    IRD - Délégation régionale Île-de-France & Ouest
    Campus Condorcet - Hôtel à projets
    8 cours des Humanités - 93322 Aubervilliers Cedex
    Horizon Pleins textes
    Aide
  •