Publications des scientifiques de l'IRD

Ferreira R. S., Guerin Joris, Delmas K., Guiochet J., Waeselynck H. (2025). Safety monitoring of machine learning perception functions : a survey. Computational Intelligence, 41 (2), p. e70032 [20 p.]. ISSN 0824-7935.

Titre du document
Safety monitoring of machine learning perception functions : a survey
Année de publication
2025
Type de document
Article référencé dans le Web of Science WOS:001470208800001
Auteurs
Ferreira R. S., Guerin Joris, Delmas K., Guiochet J., Waeselynck H.
Source
Computational Intelligence, 2025, 41 (2), p. e70032 [20 p.] ISSN 0824-7935
Machine Learning (ML) models, such as deep neural networks, are widely applied in autonomous systems to perform complex perception tasks. New dependability challenges arise when ML predictions are used in safety-critical applications, like autonomous cars and surgical robots. Thus, the use of fault tolerance mechanisms, such as safety monitors, is essential to ensure the safe behavior of the system despite the occurrence of faults. This paper presents an extensive literature review on safety monitoring of perception functions using ML in a safety-critical context. In this review, we structure the existing literature to highlight key factors to consider when designing such monitors: threat identification, requirements elicitation, detection of failure, reaction, and evaluation. We also highlight the ongoing challenges associated with safety monitoring and suggest directions for future research.
Plan de classement
Informatique [122]
Localisation
Fonds IRD [F B010093428]
Identifiant IRD
fdi:010093428
Contact