Publications des scientifiques de l'IRD

Bachèlery M. L., Brajard J., Patacchiola M., Illig Serena, Keenlyside N. (2025). Predicting Atlantic and Benguela Niño events with deep learning. Science Advances, 11 (14), p. eads5185 [12 p.]. ISSN 2375-2548.

Titre du document
Predicting Atlantic and Benguela Niño events with deep learning
Année de publication
2025
Type de document
Article référencé dans le Web of Science WOS:001457401500008
Auteurs
Bachèlery M. L., Brajard J., Patacchiola M., Illig Serena, Keenlyside N.
Source
Science Advances, 2025, 11 (14), p. eads5185 [12 p.] ISSN 2375-2548
Atlantic and Benguela Niño events substantially affect the tropical Atlantic region, with far-reaching consequences on local marine ecosystems, African climates, and El Niño Southern Oscillation. While accurate forecasts of these events are invaluable, state-of-the-art dynamic forecasting systems have shown limited predictive capabilities. Thus, the extent to which the tropical Atlantic variability is predictable remains an open question. This study explores the potential of deep learning in this context. Using a simple convolutional neural network architecture, we show that Atlantic/Benguela Niños can be predicted up to 3 to 4 months ahead. Our model excels in forecasting peak-season events with remarkable accuracy extending lead time to 5 months. Detailed analysis reveals our model's ability to exploit known physical precursors, such as long-wave ocean dynamics, for accurate predictions of these events. This study challenges the perception that the tropical Atlantic is unpredictable and highlights deep learning's potential to advance our understanding and forecasting of critical climate events.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Sciences du milieu [021] ; Limnologie physique / Océanographie physique [032]
Description Géographique
ATLANTIQUE ; BENGUELA
Localisation
Fonds IRD [F B010093410]
Identifiant IRD
fdi:010093410
Contact