Publications des scientifiques de l'IRD

Ndiaye M., Dabo-Niang S., Ngom P., Thiam N., Brehmer Patrice, El Vally Y. (2024). Nonparametric prediction and supervised classification for spatial dependent functional data under fixed sampling design. In : Seck D. (ed.), Kangni K. (ed.), Salomon Sambou M. (ed.), Nang P. (ed.), Fall M.M. (ed.). Nonlinear analysis, geometry and applications. Cham : Birkhäuser, 69-100. (Trends in Mathematics). The NLAGA's Biennial International Research Symposium, 3., Mbour (SEN), 2023/08/21-27. ISBN 978-3-031-52680-0.

Titre du document
Nonparametric prediction and supervised classification for spatial dependent functional data under fixed sampling design
Année de publication
2024
Type de document
Partie d'ouvrage
Auteurs
Ndiaye M., Dabo-Niang S., Ngom P., Thiam N., Brehmer Patrice, El Vally Y.
In
Seck D. (ed.), Kangni K. (ed.), Salomon Sambou M. (ed.), Nang P. (ed.), Fall M.M. (ed.), Nonlinear analysis, geometry and applications
Source
Cham : Birkhäuser, 2024, 69-100 (Trends in Mathematics). ISBN 978-3-031-52680-0
Colloque
The NLAGA's Biennial International Research Symposium, 3., Mbour (SEN), 2023/08/21-27
Fisheries science has been trying to identify the best way to analyze and predict fish biomass and its spatial distribution since several decades using, among others, kirigng model, co-kiriging model, Species Distribution Modeling and Joined Species Distribution Modeling, based on conventional statistical methods as Generalized Linear Models and Generalized Additive Models, with contested results. We consider a bio-ecological issue applying a non parametric spatial prediction based on a spatio-functional regression models, in a fixed design sampling context, as a supervised classification method when the variable of interest belongs to a predefined class set. The proposed predictor takes into account the spatial fish distribution and environmental variable such as salinity and temperature. The development of the method depends on two kernels to control both interactions between observations and locations. The results show that this nonparametric spatial functional supervised classification method is an efficient tool applied to predict spatial distribution of demersal coastal fish off Senegal.
Plan de classement
Océanographie [126TELAPP05] ; Modélisation [126TELTRN05]
Localisation
Fonds IRD [F B010093033]
Identifiant IRD
fdi:010093033
Contact