Publications des scientifiques de l'IRD

Zuntini A.R., Carruthers T., Maurin O., Bailey P.C., Leempoel K., Brewer G.E., Epitawalage N., Françoso E., Gallego-Paramo B., McGinnie C., Negrão R., Roy S.R., Simpson L., Toledo Romero E., Barber V.M.A., Botigué L., Clarkson J.J., Cowan R.S., Dodsworth S., Johnson M.G., Kim J.T., Pokorny L., Wickett N.J., Antar G.M., DeBolt L., Gutierrez K., Hendriks K.P., Hoewener A., Hu A.Q., Joyce E.M., Kikuchi I.A.B.S., Larridon I., John de Lírio E., Liu J.X., Malakasi P., Przelomska N.A.S., Shah T., Viruel J., Allnutt T.R., Ameka G.K., Andrew R.L., Appelhans M.S., Arista M., Ariza M.J., Arroyo J., Arthan W., Bachelier J.B., Donovan Bailey C., Barnes H.F., Barrett M.D., Barrett R.L., Bayer R.J., Bayly M.J., Biffin E., Biggs N., Birch J.L., Bogarín D., Borosova R., Bowles A.M.C., Boyce P.C., Bramley G.L.C., Briggs M., Broadhurst L., Brown G.K., Bruhl J.J., Bruneau A., Buerki S., Burns E., Byrne M., Cable S., Calladine A., Callmander M.W., Cano A., Cantrill D.J., Cardinal-McTeague W.M., Carlsen M.M., Carruthers A.J.A., De Castro Mateo A., Chase M.W., Chatrou L.W., Cheek M., Chen S., Christenhusz M.J.M., Christin P.A., Clements M.A., Coffey S.C., Conran J.G., Cornejo X., Couvreur Thomas, Cowie I.D., Csiba L., Darbyshire I., Davidse G., Davies N.M.J., Davis A.P., Van Dijk K., Downie S.R., Duretto M.F., Duvall M.R., Edwards S.L., Eggli U., Erkens R.H.J., Escudero M., De La Estrella M., Fabriano F., Fay M.F., Ferreira P.D.L., Ficinski S.Z., Fowler R.M., Frisby S., Fu L., Fulcher T., Galbany-Casals M., Gardner E.M., German D.A., Giaretta A., Giberneau M., Gillespie L.J., González C.C., Goyder D.J., Graham S.W., Grall A., Green L., Gunn B.F., Gutiérrez D.G., Hackel J., Haevermans T., Haigh A., Hall J.C., Hall T., Harrison M.J., Hatt S.A., Hildago O., Hodkinson T.R., Holmes G.D., Hopkins H.C.F., Jackson C.J., James S.A., Jobson R.W., Kadereit G., Kahandawala I.M., Kainulainen K., Kato M., Kellogg E.A., King G.J., Klejevskaja B., Klitgaard B.B., Klopper R.R., Knapp S., Koch M.A., Leebens-Mack J.H., Lens F., Leon C.J. , Léveillé-Bourret E., Lewis G.P., Li D.Z., Liede-Schumann S., Livshultz T., Lorence D., Lu M., Lu-Irving P., Luber J., Lucas E.J., Luján M., Lum M., Macfarlane T.D., Magdalena C., Mansano V.F., Masters L.E., Mayo S.J., McColl K., McDonnell A.J., McDougall A.E., McLay T.G.B., McPherson H., Meneses R.I., Merckx V.S.F.T., Michelangeli F.A., Mitchell J.D., Monro A.K., Moore M.J., Mueller T.L., Mummenhoff K., Munzinger Jérôme, Muriel P., Murphy D.J., Nargar K., Nauheimer L., Nge F.J., Nyffeler R., Orejuela A., Ortiz E.M., Palazzesi L., Peixoto A.L., Pell S.K., Pellicer J., Penneys D.S., Perez-Escobar O.A., Persson C., Pignal M., Pillon Yohan, et. al. (2024). Phylogenomics and the rise of the angiosperms. Nature, 629 (8013), 843-850. ISSN 0028-0836.

Titre du document
Phylogenomics and the rise of the angiosperms
Année de publication
2024
Type de document
Article référencé dans le Web of Science WOS:001253160400001
Auteurs
Zuntini A.R., Carruthers T., Maurin O., Bailey P.C., Leempoel K., Brewer G.E., Epitawalage N., Françoso E., Gallego-Paramo B., McGinnie C., Negrão R., Roy S.R., Simpson L., Toledo Romero E., Barber V.M.A., Botigué L., Clarkson J.J., Cowan R.S., Dodsworth S., Johnson M.G., Kim J.T., Pokorny L., Wickett N.J., Antar G.M., DeBolt L., Gutierrez K., Hendriks K.P., Hoewener A., Hu A.Q., Joyce E.M., Kikuchi I.A.B.S., Larridon I., John de Lírio E., Liu J.X., Malakasi P., Przelomska N.A.S., Shah T., Viruel J., Allnutt T.R., Ameka G.K., Andrew R.L., Appelhans M.S., Arista M., Ariza M.J., Arroyo J., Arthan W., Bachelier J.B., Donovan Bailey C., Barnes H.F., Barrett M.D., Barrett R.L., Bayer R.J., Bayly M.J., Biffin E., Biggs N., Birch J.L., Bogarín D., Borosova R., Bowles A.M.C., Boyce P.C., Bramley G.L.C., Briggs M., Broadhurst L., Brown G.K., Bruhl J.J., Bruneau A., Buerki S., Burns E., Byrne M., Cable S., Calladine A., Callmander M.W., Cano A., Cantrill D.J., Cardinal-McTeague W.M., Carlsen M.M., Carruthers A.J.A., De Castro Mateo A., Chase M.W., Chatrou L.W., Cheek M., Chen S., Christenhusz M.J.M., Christin P.A., Clements M.A., Coffey S.C., Conran J.G., Cornejo X., Couvreur Thomas, Cowie I.D., Csiba L., Darbyshire I., Davidse G., Davies N.M.J., Davis A.P., Van Dijk K., Downie S.R., Duretto M.F., Duvall M.R., Edwards S.L., Eggli U., Erkens R.H.J., Escudero M., De La Estrella M., Fabriano F., Fay M.F., Ferreira P.D.L., Ficinski S.Z., Fowler R.M., Frisby S., Fu L., Fulcher T., Galbany-Casals M., Gardner E.M., German D.A., Giaretta A., Giberneau M., Gillespie L.J., González C.C., Goyder D.J., Graham S.W., Grall A., Green L., Gunn B.F., Gutiérrez D.G., Hackel J., Haevermans T., Haigh A., Hall J.C., Hall T., Harrison M.J., Hatt S.A., Hildago O., Hodkinson T.R., Holmes G.D., Hopkins H.C.F., Jackson C.J., James S.A., Jobson R.W., Kadereit G., Kahandawala I.M., Kainulainen K., Kato M., Kellogg E.A., King G.J., Klejevskaja B., Klitgaard B.B., Klopper R.R., Knapp S., Koch M.A., Leebens-Mack J.H., Lens F., Leon C.J. , Léveillé-Bourret E., Lewis G.P., Li D.Z., Liede-Schumann S., Livshultz T., Lorence D., Lu M., Lu-Irving P., Luber J., Lucas E.J., Luján M., Lum M., Macfarlane T.D., Magdalena C., Mansano V.F., Masters L.E., Mayo S.J., McColl K., McDonnell A.J., McDougall A.E., McLay T.G.B., McPherson H., Meneses R.I., Merckx V.S.F.T., Michelangeli F.A., Mitchell J.D., Monro A.K., Moore M.J., Mueller T.L., Mummenhoff K., Munzinger Jérôme, Muriel P., Murphy D.J., Nargar K., Nauheimer L., Nge F.J., Nyffeler R., Orejuela A., Ortiz E.M., Palazzesi L., Peixoto A.L., Pell S.K., Pellicer J., Penneys D.S., Perez-Escobar O.A., Persson C., Pignal M., Pillon Yohan, et. al
Source
Nature, 2024, 629 (8013), 843-850 ISSN 0028-0836
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods(1,2). A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome(3,4). Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins(5-7). However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes(8). This 15-fold increase in genus-level sampling relative to comparable nuclear studies(9) provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
Plan de classement
Sciences du milieu [021] ; Sciences du monde végétal [076]
Localisation
Fonds IRD [F B010091562]
Identifiant IRD
fdi:010091562
Contact