Publications des scientifiques de l'IRD

Zingaro M., Hostache Renaud, Chini M., Capolongo D., Matgen P. (2024). A localized particle filtering approach to advance flood frequency estimation at large scale using satellite synthetic aperture radar image collection and hydrodynamic modelling. Remote Sensing, 16 (12), 2179 [22 p.].

Titre du document
A localized particle filtering approach to advance flood frequency estimation at large scale using satellite synthetic aperture radar image collection and hydrodynamic modelling
Année de publication
2024
Type de document
Article référencé dans le Web of Science WOS:001256213800001
Auteurs
Zingaro M., Hostache Renaud, Chini M., Capolongo D., Matgen P.
Source
Remote Sensing, 2024, 16 (12), 2179 [22 p.]
This study describes a method that combines synthetic aperture radar (SAR) data with shallow-water modeling to estimate flood hazards at a local level. The method uses particle filtering to integrate flood probability maps derived from SAR imagery with simulated flood maps for various flood return periods within specific river sub-catchments. We tested this method in a section of the Severn River basin in the UK. Our research involves 11 SAR flood observations from ENVISAT ASAR images, an ensemble of 15 particles representing various pre-computed flood scenarios, and 4 masks of spatial units corresponding to different river segmentations. Empirical results yield maps of maximum flood extent with associated return periods, reflecting the local characteristics of the river. The results are validated through a quantitative comparison approach, demonstrating that our method improves the accuracy of flood extent and scenario estimation. This provides spatially distributed return periods in sub-catchments, making flood hazard monitoring effective at a local scale.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Hydrologie [062] ; Télédétection [126]
Localisation
Fonds IRD [F B010091048]
Identifiant IRD
fdi:010091048
Contact