Publications des scientifiques de l'IRD

Sangbakembi-Ngounou C., Ngoagouni C., Akone-Ella O., Kengne Pierre, Costantini Carlo, Nakoune E., Ayala Diego. (2022). Temporal and biting dynamics of the chromosomal inversion 2La in the malaria vectors Anopheles gambiae and Anopheles coluzzii in Bangui, Central African Republic. Frontiers in Ecology and Evolution, 10, 986925 [9 p.]. ISSN 2296-701X.

Titre du document
Temporal and biting dynamics of the chromosomal inversion 2La in the malaria vectors Anopheles gambiae and Anopheles coluzzii in Bangui, Central African Republic
Année de publication
2022
Type de document
Article référencé dans le Web of Science WOS:001026984200001
Auteurs
Sangbakembi-Ngounou C., Ngoagouni C., Akone-Ella O., Kengne Pierre, Costantini Carlo, Nakoune E., Ayala Diego
Source
Frontiers in Ecology and Evolution, 2022, 10, 986925 [9 p.] ISSN 2296-701X
The chromosomal rearrangement 2La has been directly involved in the ecological and deadly epidemiological success of the malaria mosquitoes Anopheles gambiae and Anopheles coluzzii in sub-Saharan Africa. However, little is known about the biological and ecological factors that drive the local and temporal dynamics of this inversion in both species. Here, we performed a year-round longitudinal survey in Bangui, Central African Republic. We monthly sampled A. gambiae and A. coluzzii mosquitoes indoor and outdoor using human landing catches (HLC) for 48 h non-stop. We molecularly karyotyped all specimens to study the 2La inversion frequency variations, and monitored the mosquito spatial and temporal biting behavior throughout the year. In total, we successfully karyotyped 5121 A. gambiae and 986 A. coluzzii specimens. The 2La inversion frequency was higher in A. coluzzii than in A. gambiae across the year. In A. gambiae and A. coluzzii, the inversion frequency or karyotypes did not influence the biting behavior, either location or time. Moreover, the inversion frequency variation in both species was also independent of local climatic changes. Overall, our results revealed that in Bangui, the 2La inversion segregates at different frequency in each species, but this is not influenced by their trophic behavior. Studying the impact of urban settings and the population genetic structure of these two A. gambiae complex members could bring insights into the intrinsic relationship between 2La inversion and local conditions. More studies are needed to understand the polymorphic equilibrium of this inversion in Bangui.
Plan de classement
Santé : généralités [050] ; Entomologie médicale / Parasitologie / Virologie [052]
Description Géographique
CENTRAFRIQUE ; BANGUI
Localisation
Fonds IRD [F B010088221]
Identifiant IRD
fdi:010088221
Contact