Publications des scientifiques de l'IRD

Silvy Y., Sallee J. B., Guilyardi E., Mignot Juliette, Rousset C. (2022). What causes anthropogenic ocean warming to emerge from internal variability in a coupled model ?. Journal of Climate, 35 (22), p. 3835-3854. ISSN 0894-8755.

Titre du document
What causes anthropogenic ocean warming to emerge from internal variability in a coupled model ?
Année de publication
2022
Type de document
Article référencé dans le Web of Science WOS:000884682900016
Auteurs
Silvy Y., Sallee J. B., Guilyardi E., Mignot Juliette, Rousset C.
Source
Journal of Climate, 2022, 35 (22), p. 3835-3854 ISSN 0894-8755
In response to increasing human emissions, the global ocean is continually warming. The spatial distribution of this warming can result from several mechanisms, difficult to disentangle in observations. Idealized modeling studies have successfully separated the contribution of additional heat passively entering the ocean from the contribution of the changing circulation redistributing the pre-existing heat in response to perturbations in air-sea fluxes. However, the time scales of these different contributions have been largely unexplored so far. Here, we revisit this decomposition with a novel numerical framework to investigate the mechanisms driving regional ocean warming and its emergence from internal variability. Based on the IPSL-CM6A-LR coupled model and its large ensemble of transient climate change simulations, we extract both the internal fluctuations and the externally forced signal in each component of the surface fluxes. With a stand-alone configuration of the ocean, we then test the response to perturbations applied on all surface fluxes together or individually. We find that the contribution of the different processes can largely vary in time, reinforcing or counteracting each other, causing the time of emergence of subsurface temperature changes to be advanced or delayed. Anthropogenic warming in the upper ocean water masses is generally driven by the uptake of excess heat passively stored by the ocean circulation. Circulation changes have a minor role at the time when these signals emerge. On the contrary, in the deeper ocean, circulation changes are much more sensitive to surface forcings and play an important role in setting the time scales of ocean warming, through redistributive warming or cooling.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Sciences du milieu [021] ; Limnologie physique / Océanographie physique [032]
Description Géographique
MONDE
Localisation
Fonds IRD [F B010086498]
Identifiant IRD
fdi:010086498
Contact