Publications des scientifiques de l'IRD

Michaut C., Pinel Virginie, Maccaferri F. (2020). Magma ascent at floor-fractured craters diagnoses the lithospheric stress state on the Moon. Earth and Planetary Science Letters, 530, p. art. 115889 [14p.]. ISSN 0012-821X.

Titre du document
Magma ascent at floor-fractured craters diagnoses the lithospheric stress state on the Moon
Année de publication
2020
Type de document
Article référencé dans le Web of Science WOS:000508747300023
Auteurs
Michaut C., Pinel Virginie, Maccaferri F.
Source
Earth and Planetary Science Letters, 2020, 530, p. art. 115889 [14p.] ISSN 0012-821X
On the Moon, floor-fractured craters (FFCs) present evidence of horizontal crater-centred magmatic intrusions. Crater floor uplift and moat formation indicate that these sill intrusions occur at shallow depths (< 10 km). While a recent study has demonstrated that magma ascent below FFCs and mare-filled craters was triggered by crater unloading, the mechanism leading to the emplacement of shallow sills is still poorly understood. Here we show that the local stress field due to crater unloading is also responsible for the horizontalisation of the magma flow leading to sill-like intrusions. On Earth, caldera formation has been shown to similarly affect magma trajectories, inducing the formation of a sill-shaped storage zone. Magma ascent to shallow depths below FFCs was however made possible because of a regional tensional stress caused by mare loading on the lunar lithosphere. We show that the tensional stress generated by elastic lithosphere deformation caused by mare loading combined to the local crater stress field can explain the distribution of FFCs on the Moon, with the smallest FFCs being located over a larger distance range from the mare. In particular, FFCs distribution around Oceanus Procellarum is consistent with an average load thickness of similar to 1 km. This study suggests that magma trajectory in the crust of terrestrial planets can provide a diagnostic of the lithospheric structure and state of stress.
Plan de classement
Sciences de la Terre : généralités [060] ; Géologie et formations superficielles [064] ; Géophysique interne [066]
Localisation
Fonds IRD [F B010077841]
Identifiant IRD
fdi:010077841
Contact