Publications des scientifiques de l'IRD

Feneyrol J., Giuliani Gaston, Ohnenstetter D., Fallick A. E., Martelat J. E., Monie P., Dubessy J., Rollion-Bard C., Le Goff E., Malisa E., Rakotondrazafy A. F. M., Pardieu V., Kahn T., Ichangi D., Venance E., Voarintsoa N. R., Ranatsenho M. M., Simonet C., Omito E., Nyamai C., Saul M. (2013). New aspects and perspectives on tsavorite deposits. Ore Geology Reviews, 53, p. 1-25. ISSN 0169-1368.

Titre du document
New aspects and perspectives on tsavorite deposits
Année de publication
2013
Type de document
Article référencé dans le Web of Science WOS:000318453000001
Auteurs
Feneyrol J., Giuliani Gaston, Ohnenstetter D., Fallick A. E., Martelat J. E., Monie P., Dubessy J., Rollion-Bard C., Le Goff E., Malisa E., Rakotondrazafy A. F. M., Pardieu V., Kahn T., Ichangi D., Venance E., Voarintsoa N. R., Ranatsenho M. M., Simonet C., Omito E., Nyamai C., Saul M.
Source
Ore Geology Reviews, 2013, 53, p. 1-25 ISSN 0169-1368
Tsavorite, the vanadian variety of green grossular, is a high value economic gemstone. It is hosted exclusively in the metasedimentary formations from the Neoproterozoic Metamorphic Mozambique Belt. The deposits are mined in Kenya, Tanzania and Madagascar and other occurrences are located in Pakistan and East Antarctica. They are located within metasomatized graphitic rocks such as graphitic gneiss and calc-silicates, intercalated with meta-evaporites. Tsavorite is found as primary deposits either in nodule (type I) or in quartz vein (type II), and in placers (type III). The primary mineralizations (types I and II) are controlled by lithostratigraphy and/or structure. For the African occurrences, the protoliths of the host-rocks were deposited at the beginning of the Neoproterozoic within a marine coastal sabkha environment, located at the margin of the Congo-Kalahari cratons in the Mozambique Ocean. During the East African-Antarctican Orogeny, the rocks underwent high amphibolite to granulite fades metamorphism and the formation of tsavorite deposits occurred between 650 and 550 Ma. The nodules of tsavorite were formed during prograde metamorphism, calcium coming from sulphates and carbonates, whereas alumina, silicates, vanadium and chromium probably came from clays and chlorite. The veins were formed during the deformation of the metasedimentary platform units which experienced shearing, leading to the formation of fault-filled veins. Metasomatism developed during retrograde metamorphism. The metasedimentary sequences are characterized by the presence of evaporitic minerals such as gypsum and anhydrite, and scapolite. Evaporites are essential as they provide calcium and permit the mobilization of all the chemical elements for tsavorite formation. The H2S-S-8 metamorphic fluids characterized in primary fluid inclusions of tsavorites and the delta B-11 values of coeval dravite confirm the evaporitic origin of the fluids. The V2O3 and Cr2O3 contents of tsavorite range respectively from 0.05 to 7.5 wt.%, while their delta O-18 values are in the range of 9.5-21.1 parts per thousand. The genetic model proposed for tsavorite is metamorphic, based on chemical reactions developed between an initial assemblage composed of gypsum and anhydrite, carbonates and organic matter deposited in a sabkha-like sedimentary basin.
Plan de classement
Géologie et formations superficielles [064]
Localisation
Fonds IRD [F B010060328]
Identifiant IRD
fdi:010060328
Contact