Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Joo R., Bertrand Sophie, Chaigneau Alexis, Niquen M. (2011). Optimization of an artificial neural network for identifying fishing set positions from VMS data : an example from the Peruvian anchovy purse seine fishery. Ecological Modelling, 222 (4), 1048-1059. ISSN 0304-3800

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1016/j.ecolmodel.2010.08.039

Titre
Optimization of an artificial neural network for identifying fishing set positions from VMS data : an example from the Peruvian anchovy purse seine fishery
Année de publication2011
Type de documentArticle référencé dans le Web of Science WOS:000287291000014
AuteursJoo R., Bertrand Sophie, Chaigneau Alexis, Niquen M.
SourceEcological Modelling, 2011, 222 (4), p. 1048-1059. ISSN 0304-3800
RésuméThe spatial behavior of numerous fishing fleets is nowadays well documented thanks to satellite Vessel Monitoring Systems (VMS). Vessel positions are recorded on a frequent and regular basis which opens promising perspectives for improving fishing effort estimation and management. However, no specific information is provided on whether the vessel is fishing or not. To answer that question, existing works on VMS data usually apply simple criteria (e.g. threshold on speed). Those simple criteria generally focus in detecting true positives (a true fishing set detected as a fishing set); conversely, estimation errors are given no attention. For our case study, the Peruvian anchovy fishery, those criteria overestimate the total number of fishing sets by 182%. To overcome this problem an artificial neural network (ANN) approach is presented here. In order to set both the optimal parameterization and use "rules" for this ANN, we perform an extensive sensitivity analysis on the optimization of (1) the internal structure and training algorithm of the ANN and (2) the "rules" used for choosing both the relative size and the composition of the databases (DBs) used for training and inferring with the ANN. The "optimized" ANN greatly improves the estimates of the number and location of fishing events. For our case study, ANN reduces the total estimation error on the number of fishing sets to 1% (in average) and obtains 76% of true positives. This spatially explicit information on effort, provided with error estimation, should greatly reduce misleading interpretations of catch per unit effort and thus significantly improve the adaptive management of fisheries. While fitted on Peruvian anchovy fishery data, this type of neural network approach has wider potential and could be implemented in any fishery relying on both VMS and at-sea observer data. In order to increase the accuracy of the ANN results, we also suggest some criteria for improving sampling design by at-sea observers and VMS data.
Plan de classementTélédétection [126] ; Ressources halieutiques [040]
LocalisationFonds IRD [F B010053066]
Identifiant IRDfdi:010053066
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010053066

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito