Publications des scientifiques de l'IRD

Miché Lucie, Moulin Lionel, Chaintreuil Clemence, Contreras-Jimenez J. L., Munive-Hernandez J. A., Villegas-Hernandez M. D., Crozier Françoise, Béna Gilles. (2010). Diversity analyses of Aeschynomene symbionts in Tropical Africa and Central America reveal that nod-independent stem nodulation is not restricted to photosynthetic bradyrhizobia. Environmental Microbiology, 12 (8), p. 2152-2164. ISSN 1462-2912.

Titre du document
Diversity analyses of Aeschynomene symbionts in Tropical Africa and Central America reveal that nod-independent stem nodulation is not restricted to photosynthetic bradyrhizobia
Année de publication
2010
Type de document
Article référencé dans le Web of Science WOS:000280652500010
Auteurs
Miché Lucie, Moulin Lionel, Chaintreuil Clemence, Contreras-Jimenez J. L., Munive-Hernandez J. A., Villegas-Hernandez M. D., Crozier Françoise, Béna Gilles
Source
Environmental Microbiology, 2010, 12 (8), p. 2152-2164 ISSN 1462-2912
Tropical aquatic legumes of the genus Aeschynomene are unique in that they can be stem-nodulated by photosynthetic bradyrhizobia. Moreover, a recent study demonstrated that two Aeschynomene indica symbionts lack canonical nod genes, thereby raising questions about the distribution of such atypical symbioses among rhizobial-legume interactions. Population structure and genomic diversity were compared among stem-nodulating bradyrhizobia isolated from various Aeschynomene species of Central America and Tropical Africa. Phylogenetic analyses based on the recA gene and whole-genome amplified fragment length polymorphism (AFLP) fingerprints on 110 bacterial strains highlighted that all the photosynthetic strains form a separate cluster among bradyrhizobia, with no obvious structuring according to their geographical or plant origins. Nod-independent symbiosis was present in all sampling areas and seemed to be linked to Aeschynomene host species. However, it was not strictly dependent on photosynthetic ability, as exemplified by a newly identified cluster of strains that lacked canonical nod genes and efficiently stem-nodulated A. indica, but were not photosynthetic. Interestingly, the phenotypic properties of this new cluster of bacteria were reflected by their phylogenetical position, as being intermediate in distance between classical root-nodulatingBradyrhizobium spp. and photosynthetic ones. This result opens new prospects about stem-nodulating bradyrhizobial evolution.
Plan de classement
Biotechnologies [084]
Localisation
Fonds IRD [F B010049703]
Identifiant IRD
fdi:010049703
Contact