Publications des scientifiques de l'IRD

Rochelle Newall Emma, Winter C., Barron C., Borges A. V., Duarte C. M., Elliott M., Frankignoulle M., Gazeau F., Middelburg J.J., Pizay M.D., Gattuso J.P. (2007). Artificial neural network analysis of factors controling ecosystem metabolism in coastal systems. Ecological Applications, 17 (5 Suppl.), p. S185-S196. ISSN 1051-0761.

Titre du document
Artificial neural network analysis of factors controling ecosystem metabolism in coastal systems
Année de publication
2007
Type de document
Article référencé dans le Web of Science WOS:000248335600014
Auteurs
Rochelle Newall Emma, Winter C., Barron C., Borges A. V., Duarte C. M., Elliott M., Frankignoulle M., Gazeau F., Middelburg J.J., Pizay M.D., Gattuso J.P.
Source
Ecological Applications, 2007, 17 (5 Suppl.), p. S185-S196 ISSN 1051-0761
Knowing the metabolic balance of an ecosystem is of utmost importance in determining whether the system is a net source or net sink of carbon dioxide to the atmosphere. However, obtaining these estimates often demands significant amounts of time and manpower. Here we present a simplified way to obtain an estimation of ecosystem metabolism. We used artificial neural networks (ANNs) to develop a mathematical model of the gross primary production to community respiration ratio (GPP:CR) based on input variables derived from three widely contrasting European coastal ecosystems (Scheldt Estuary, Randers Fjord, and Bay of Palma). Although very large gradients of nutrient concentration, light penetration, and organic-matter concentration exist across the sites, the factors that best predict the GPP:CR ratio are sampling depth, dissolved organic carbon (DOC) concentration, and temperature. We propose that, at least in coastal ecosystems, metabolic balance can be predicted relatively easily from these three predictive factors. An important conclusion of this work is that ANNs can provide a robust tool for the determination of ecosystem metabolism in coastal ecosystems.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Ecologie, systèmes aquatiques [036]
Localisation
Fonds IRD [F B010040759]
Identifiant IRD
fdi:010040759
Contact