Publications des scientifiques de l'IRD

Albert A., Andre M., Anghinolfi M., Anton G., Ardid M., Aubert J. J., Aublin J., Baret B., Basa S., Belhorma B., Bertin V., Biagi S., Bissinger M., Boumaaza J., Bouta M., Bouwhuis M. C., Branzas H., Bruijn R., Brunner J., Busto J., Capone A., Caramete L., Carr J., Cecchini S., Celli S., Chabab M., Chau T. N., El Moursli R. C., Chiarusi T., Circella M., Coleiro A., Colomer-Molla M., Coniglione R., Coyle P., Creusot A., Diaz A. F., de Wasseige G., Deschamps A., Distefano C., Di Palma I., Domi A., Donzaud C., Dornic D., Drouhin D., Eberl T., El Khayati N., Enzenhofer A., Ettahiri A., Fermani P., Ferrara G., Filippini F., Fusco L., Gay P., Glotin H., Gozzini R., Graf K., Guidi C., Hallmann S., van Haren H., Heijboer A. J., Hello Yann, et al., ANTARES Collaboration. (2021). Monte Carlo simulations for the ANTARES underwater neutrino telescope. Journal of Cosmology and Astroparticle Physics, (1), 064 [19 p.]. ISSN 1475-7516.

Titre du document
Monte Carlo simulations for the ANTARES underwater neutrino telescope
Année de publication
2021
Type de document
Article référencé dans le Web of Science WOS:000620675000064
Auteurs
Albert A., Andre M., Anghinolfi M., Anton G., Ardid M., Aubert J. J., Aublin J., Baret B., Basa S., Belhorma B., Bertin V., Biagi S., Bissinger M., Boumaaza J., Bouta M., Bouwhuis M. C., Branzas H., Bruijn R., Brunner J., Busto J., Capone A., Caramete L., Carr J., Cecchini S., Celli S., Chabab M., Chau T. N., El Moursli R. C., Chiarusi T., Circella M., Coleiro A., Colomer-Molla M., Coniglione R., Coyle P., Creusot A., Diaz A. F., de Wasseige G., Deschamps A., Distefano C., Di Palma I., Domi A., Donzaud C., Dornic D., Drouhin D., Eberl T., El Khayati N., Enzenhofer A., Ettahiri A., Fermani P., Ferrara G., Filippini F., Fusco L., Gay P., Glotin H., Gozzini R., Graf K., Guidi C., Hallmann S., van Haren H., Heijboer A. J., Hello Yann, et al., ANTARES Collaboration
Source
Journal of Cosmology and Astroparticle Physics, 2021, (1), 064 [19 p.] ISSN 1475-7516
Monte Carlo simulations are a unique tool to check the response of a detector and to monitor its performance. For a deep-sea neutrino telescope, the variability of the environmental conditions that can affect the behaviour of the data acquisition system must be considered, in addition to a reliable description of the active parts of the detector and of the features of physics events, in order to produce a realistic set of simulated events. In this paper, the software tools used to produce neutrino and cosmic ray signatures in the telescope and the strategy developed to represent the time evolution of the natural environment and of the detector efficiency are described.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020]
Localisation
Fonds IRD [F B010092339]
Identifiant IRD
PAR00022247
Contact