Publications des scientifiques de l'IRD

Edmonds M., Tutolo B., Iacovino K., Moussallam Yves. (2020). Magmatic carbon outgassing and uptake of CO2 by alkaline waters. American Mineralogist, 105 (1), p. 28-34. ISSN 0003-004X.

Titre du document
Magmatic carbon outgassing and uptake of CO2 by alkaline waters
Année de publication
2020
Type de document
Article référencé dans le Web of Science WOS:000505007500004
Auteurs
Edmonds M., Tutolo B., Iacovino K., Moussallam Yves
Source
American Mineralogist, 2020, 105 (1), p. 28-34 ISSN 0003-004X
Much of Earth's carbon resides in the "deep" realms of our planet: sediments, crust, mantle, and core. The interaction of these deep reservoirs of carbon with the surface reservoir (atmosphere and oceans) leads to a habitable surface environment, with an equitable atmospheric composition and comfortable range in temperature that together have allowed life to proliferate. The Earth in Five Reactions project (part of the Deep Carbon Observatory program) identified the most important carbon-bearing reactions of our planet, defined as those which perhaps make our planet unique among those in our Solar System, to highlight and review how the deep and surface carbon cycles connect. Here we review the important reactions that control the concentration of carbon dioxide in our atmosphere: outgassing from magmas during volcanic eruptions and during magmatic activity; and uptake of CO2 by alkaline surface waters. We describe the state of our knowledge about these reactions and their controls, the extent to which we understand the mass budgets of carbon that are mediated by these reactions, and finally, the implications of these reactions for understanding present-day climate change that is driven by anthropogenic emission of CO2.
Plan de classement
Hydrologie [062] ; Géologie et formations superficielles [064] ; Géophysique interne [066]
Localisation
Fonds IRD [F B010077499]
Identifiant IRD
fdi:010077499
Contact