%0 Book Section %9 OS CH : Chapitres d'ouvrages scientifiques %A Sidje, R.B. %A Philippe, B. %T Parallel Krylov subspace basis computation %B Actes du deuxième colloque africain sur la recherche en informatique = Proceedings of the second African Conference on research in computer science %C Paris %D 1994 %E Tankoano, J. %L fdi:40894 %G ENG %I ORSTOM %@ 2-7099-1224-4 %K INFORMATIQUE SCIENTIFIQUE ; PROGRAMMATION ; METHODOLOGIE ; MEMOIRE INFORMATIQUE %P 421-439 %U https://www.documentation.ird.fr/hor/fdi:40894 %> https://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/colloques2/40894.pdf %W Horizon (IRD) %X Numerical methods related on Krylov subspaces are widely used in large sparse numerical linear algebra. Vectors in these subspaces are manipulated through their representation onto orthonormal bases. Nowadays, on serial computers, the method of Arnoldi is considered as a reliable technique for constructing such bases. Unfortunately, this technique is rather inflexible to be efficiently implemented on parallel computers. In this report we examine several parallel and stable algorithms based on the idea of Reichel et al. which retrieve at their completion the same information as the sequential Arnoldi's method. We present timing results obtained from their implementations on the Intel Paragon distributed-memory multiprocessor machine. (Résumé d'auteur) %S Colloques et Séminaires %B CARI 94 %8 1994/10/12-18 %$ 122LOGIC