%0 Journal Article %9 ACL : Articles dans des revues avec comité de lecture répertoriées par l'AERES %A Iovan, Corina %A Kulbicki, M. %A Mermet, E. %T Deep convolutional neural network for mangrove mapping %B IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium %C Piscataway %D 2020 %L fdi:010084424 %G ENG %I IEEE %@ 978-1-7281-6375-8 %K PACIFIQUE ; FIDJI %M ISI:000664335302006 %P 1969-1972 %R 10.1109/IGARSS39084.2020.9323802 %U https://www.documentation.ird.fr/hor/fdi:010084424 %> https://www.documentation.ird.fr/intranet/publi/2023-01/010084424.pdf %W Horizon (IRD) %X Updated information on the spatial distribution of mangrove forests is of high importance for management plans. Yet, access to mangrove distribution maps is limited, even-though remote sensing data is currently freely available and deep learning algorithms score high performances in automatic classification tasks. The methodologies developed in this paper are based on a deep convolutional neural network and have been tested on WorldView 2 and Sentinel-2 images. The obtained results are highly satisfactory and open perspectives for automatically mapping mangrove distribution over large areas. %B IGARSS.International Geoscience and Remote Sensing Symposium %8 2020/09/26-2020/10/02 %$ 126 ; 128 ; 082