%0 Journal Article %9 ACL : Articles dans des revues avec comité de lecture répertoriées par l'AERES %A Delorme, B. L. %A Thomas, L. N. %A Marchesiello, Patrick %A Gula, J. %A Roullet, G. %A Molemaker, M. J. %T Enhanced abyssal mixing in the Equatorial Pacific associated with non-traditional effects %D 2021 %L fdi:010084284 %G ENG %J Journal of Physical Oceanography %@ 0022-3670 %K Tropics ; Abyssal circulation ; Diapycnal mixing ; Waves ; oceanic %K PACIFIQUE ; ZONE EQUATORIALE %M ISI:000751705900010 %N 6 %P 1892-1914 %R 10.1175/jpo-d-20-0238.1 %U https://www.documentation.ird.fr/hor/fdi:010084284 %> https://www.documentation.ird.fr/intranet/publi/2022-03/010084284.pdf %V 51 %W Horizon (IRD) %X Recent theoretical work has shown that, when the so-called nontraditional effects are taken into account, the reflection of equatorially trapped waves (ETWs) off the seafloor generates strong vertical shear that results in bottom-intensified mixing at the inertial latitude of the ETW via a mechanism of critical reflection. It has been estimated that this process could play an important role in driving diapycnal upwelling in the abyssal meridional overturning circulation (AMOC). However, these results were derived under an idealized configuration with a monochromatic ETW propagating through a flat ocean at rest. To test the theory in a flow that is more representative of the ocean, we contrast a set of realistic numerical simulations of the eastern equatorial Pacific run using either the hydrostatic or quasi-hydrostatic approximation, the latter of which accounts for nontraditional effects. The simulations are nested into a Pacific-wide hydrostatic parent solution forced with climatological data and realistic bathymetry, resulting in anETWfield and a deep circulation consistent with observations. Using these simulations, we observe enhanced abyssal mixing in the quasi-hydrostatic run, even over smooth topography, that is absent in the hydrostatic run. The mixing is associated with inertial shear that has spatiotemporal properties consistent with the critical reflection mechanism. The enhanced mixing results in a weakening of the abyssal stratification and drives diapycnal upwelling in our simulation, in agreement with the predictions from the idealized simulations. The diapycnal upwelling is O(10) Sv (1 Sv equivalent to 10(6) m(3) s(-1)) and thus could play an important role in closing the AMOC. %$ 032