Publications des scientifiques de l'IRD

Menesguen C., Le Gentil S., Marchesiello Patrick, Ducousso N. (2018). Destabilization of an oceanic meddy-like vortex : energy transfers and significance of numerical settings. Journal of Physical Oceanography, 48 (5), p. 1151-1168. ISSN 0022-3670.

Titre du document
Destabilization of an oceanic meddy-like vortex : energy transfers and significance of numerical settings
Année de publication
2018
Type de document
Article référencé dans le Web of Science WOS:000437214700009
Auteurs
Menesguen C., Le Gentil S., Marchesiello Patrick, Ducousso N.
Source
Journal of Physical Oceanography, 2018, 48 (5), p. 1151-1168 ISSN 0022-3670
The increase of computational capabilities led recent studies to implement very high-resolution simulations that gave access to new scale interaction processes, particularly those associated with the transfer of energy from the oceanic mesoscales to smaller scales through an interior route to dissipation, which is still underexplored. In this context, we study spindown simulations of a mesoscale interior vortex, unstable to a mixed baroclinic-barotropic instability. Even though the global energy is almost conserved, some energy is transferred down to dissipation scales during the development of instabilities. However, in our parameter regime, there is no substantial forward energy cascade sustained by unbalanced dynamics. Rather than exploring the physical parameter range, we clarify numerical discretization issues that can be detrimental to the physical solutions and our interpretation of finescale dynamics. Special care is given to determining the effective resolution of the different simulations. We improve it by a factor of 2 in our primitive equation (PE) finitedifference Coastal and Regional Ocean Community (CROCO) model by implementing a fifth-order accurate horizontal advection scheme. We also explore a range of grid aspect ratios dx/dz and find that energy spectra converge for aspect ratios that are close to N/f, the ratio of the stratification N over the Coriolis parameter f. However, convergence is not reached in the PE model when using a fourth-order centered scheme for vertical tracer advection (standard in ROMS-family codes). The scheme produces dispersion errors that trigger baroclinic instabilities and generate spurious submesoscale horizontal features. This spurious instability shows great impact on submesoscale production and energy cascade, emphasizing the significance of numerical settings in oceanic turbulence studies.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Limnologie physique / Océanographie physique [032]
Localisation
Fonds IRD [F B010073635]
Identifiant IRD
fdi:010073635
Contact