Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Chahinian Nanée, Piat-Marchand A.L., Bringay S., Teisseire M., Boulogne E., Deruelle L., Derras M., Delenne C. (2016). How can big data used to reduce uncertainty in stormwater modelling ?. In : Bailly J.S. (ed.), Griffith D. (ed.), Josselin D. (ed.) Proceedings of the Spatial Accuracy 2016. s.l. : ISARA, 8 p. Spatial Accuracy Conference, Montpellier (FRA), 2016/07/05-08. ISBN 978-2-9105-4510-5

Fichier PDF disponiblehttp://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers17-06/010070110.pdf[ PDF Link ]

Lien sur le Web http://www.spatial-accuracy.org/system/files/How%20can%20big%20data%20be%20used%20to%20reduce%20uncertainty%20in%20stormwater%20modelling.pdf

En Libre Accès sur HAL https://hal.archives-ouvertes.fr/hal-01417491

Titre
How can big data used to reduce uncertainty in stormwater modelling ?
Année de publication2016
Type de documentPartie d'ouvrage
AuteursChahinian Nanée, Piat-Marchand A.L., Bringay S., Teisseire M., Boulogne E., Deruelle L., Derras M., Delenne C.
InBailly J.S. (ed.), Griffith D. (ed.), Josselin D. (ed.) Proceedings of the Spatial Accuracy 2016
Sources.l. : ISARA, 2016, 8 p. ISBN 978-2-9105-4510-5
ColloqueSpatial Accuracy Conference, Montpellier (FRA), 2016/07/05-08
RésuméUrban growth is an ongoing trend and one of its direct consequences is the development of buried utility networks. With growing needs among consumers, new networks are being in- stalled and more underground space is being occupied. Locating these networks is becoming a challenging task. Mispositioning of utility networks is an important problem for both indus- trialised and developing countries and will worsen as cities expand and their networks increase in size and complexity (Jamil et al. (2012), Metje et al. (2007)). Over the past century, it was common practice for public service providers to install, operate and repair their networks sepa- rately Rogers et al. (2012). Now local authorities are confronted with the task of combing data produced by different parties, having distinct formats, variable precision and granularity (Chen and Cohn (2011)). Although in certain countries contractors are now obliged by law to position all buried networks within set precision ranges, finding data related to older network branches is a cumbersome task. Once located these data are often unavailable at the desired precision or are prone to errors or omissions. This study is a part of a global project which aims to recreate a storm water and a sewage network in settings where no accurate information regarding the position or characteristics of buried utility networks is available. The methodology consists in detecting objects, such as manhole covers or inlet grates, from areal photographs and very high resolution satellite imagery and use alternative sources of big data in order to extract interesting descriptor about them. The big data is original information scrapped from the internet such as calls for tenders, newspaper articles, consumer complaints etc. Information extracted with text mining techniques such as used in Kergosien et al. (2015) are particularly interesting to confirm or infirm the position of the previously detected manhole covers and inlet grate. This infor- mation is then used to build an attribute table of the underlying pipes. Once located, standard industry recommendations for pipe selection (diameter, slope, depth, junctions, etc.) are used to define a statistically probable network, including uncertainty associated to each characteristic. The final objective of this work will be to carry out hydraulic simulations using a classical mod- elling software and assess the output hydrographs sensitivity to location and descriptor errors.
Plan de classementRépartition spatio-temporelle des précipitations [062MECEAU01]
DescripteursPLUIE ; MODELISATION ; RUISSELLEMENT ; AMENAGEMENT HYDRAULIQUE ; VILLE ; ANALYSE DE DONNEES ; METHODOLOGIE ; BIG DATA ; EAU PLUVIALE
Descr. géo.FRANCE ; MONTPELLIER
LocalisationFonds IRD [F B010070110]
Identifiant IRDfdi:010070110
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010070110

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


* PDF Link :

    à télécharger pour citer/partager ce document sur les réseaux sociaux académiques


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito