%0 Journal Article %9 ACL : Articles dans des revues avec comité de lecture répertoriées par l'AERES %A Carroll, E. L. %A Brooks, L. %A Baker, C. S. %A Burns, D. %A Garrigue, Claire %A Hauser, N. %A Jackson, J. A. %A Poole, M. M. %A Fewster, R. M. %T Assessing the design and power of capture-recapture studies to estimate demographic parameters for the Endangered Oceania humpback whale population %D 2015 %L fdi:010065328 %G ENG %J Endangered Species Research %@ 1863-5407 %K TONGA ; POLYNESIE FRANCAISE ; NOUVELLE CALEDONIE ; OCEANIE %M ISI:000361551100006 %N 2 %P 147-162 %R 10.3354/esr00686 %U https://www.documentation.ird.fr/hor/fdi:010065328 %> https://www.documentation.ird.fr/intranet/publi/2015/10/010065328.pdf %V 28 %W Horizon (IRD) %X Capture-recapture studies offer a powerful tool to assess abundance, survival and population rate of change (lambda). A previous capture-recapture study, based on DNA profiles, estimated that the IUCN-listed Endangered Oceania population of humpback whales had a super-population size of 4329 whales (95% confidence limits, CL: 3345, 5315) and lambda = 1.03 (95% CL: 0.90-1.18) for the period 1999-2005. This low estimate of lambda contrasts with the high estimated. for the neighbouring east Australia population (1.11; 95% CL: 1.105-1.113). A future assessment of Oceania humpbacks through capture-recapture methodology has been proposed to meet 3 objectives: (1) estimate population size with a coefficient of variation of <20%, and detect if lambda is significantly different from (2) 1.00 or (3) lambda of east Australia. The proposed survey design involves using DNA profiles to identify whales on principal breeding grounds within Oceania in proportion to the abundance of whales on these grounds over the 10 to 12 wk wintering period, to minimise capture heterogeneity between individuals and to maximise capture probabilities. Simulations of the idealised survey design incorporating data from the previous surveys (1999-2005) with 3 new survey years were conducted under a range of scenarios for the 'true' demographic status of the population. Simulations of the entire Oceania region showed that the proposed design will give sufficient power to meet objectives (1) under all scenarios, (2) if the true lambda >= 1.05 and (3) if the true lambda <= 1.05. Region-specific simulations suggested there was scope to test for differences in recovery between principal breeding sites within Oceania. %$ 036