%0 Journal Article %9 ACL : Articles dans des revues avec comité de lecture répertoriées par l'AERES %A Moreno, M. %A Salgueiro, P. %A Vicente, J. L. %A Cano, J. %A Berzosa, P. J. %A de Lucio, A. %A Simard, Frédéric %A Caccone, A. %A Do Rosario, V. E. %A Pinto, J. %A Benito, A. %T Genetic population structure of Anopheles gambiae in Equatorial Guinea - art. no. 137 %D 2007 %L fdi:010040907 %G ENG %J Malaria Journal %@ 1475-2875 %M CC:0002514530-0001 %P NIL_1-NIL_10 %R 10.1186/1475-2875-6-137 %U https://www.documentation.ird.fr/hor/fdi:010040907 %> https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers17-09/010040907.pdf %V 6 %W Horizon (IRD) %X Background: Patterns of genetic structure among mosquito vector populations in islands have received particular attention as these are considered potentially suitable sites for experimental trials on transgenic-based malaria control strategies. In this study, levels of genetic differentiation have been estimated between populations of Anopheles gambiae s.s.from the islands of Bioko and Annobon, and from continental Equatorial Guinea (EG) and Gabon. Methods: Genotyping of 11 microsatellite loci located in chromosome 3 was performed in three island samples (two in Bioko and one in Annobon) and three mainland samples (two in EG and one in Gabon). Four samples belonged to the M molecular form and two to the S-form. Microsatellite data was used to estimate genetic diversity parameters, perform demographic equilibrium tests and analyse population differentiation. Results: High levels of genetic differentiation were found between the more geographically remote island of Annobon and the continent, contrasting with the shallow differentiation between Bioko island, closest to mainland, and continental localities. In Bioko, differentiation between M and S forms was higher than that observed between island and mainland samples of the same molecular form. Conclusion: The observed patterns of population structure seem to be governed by the presence of both physical (the ocean) and biological (the M-S form discontinuity) barriers to gene flow. The significant degree of genetic isolation between M and S forms detected by microsatellite loci located outside the "genomic islands" of speciation identified in A. gambiae s.s. further supports the hypothesis of on-going incipient speciation within this species. The implications of these findings regarding vector control strategies are discussed. %$ 052