Publications des scientifiques de l'IRD

Martinot P. L., Guigue Catherine, Chifflet Sandrine, Cuny P., Barani A., Didry M., Dignan C., Guyomarc'h L., Pradel Nathalie, Pringault Olivier, Van Wambeke F., Vu C. T., Mari Xavier, Tedetti Marc. (2023). Assessing the bioavailability of black carbon-derived dissolved organic matter for marine heterotrophic prokaryotes + [Corrigendum, 2 p.]. Science of the Total Environment, 901, 165802 [18 p.] [+ Corrigendum, vol. 904, 166251]. ISSN 0048-9697.

Titre du document
Assessing the bioavailability of black carbon-derived dissolved organic matter for marine heterotrophic prokaryotes + [Corrigendum, 2 p.]
Année de publication
2023
Type de document
Article référencé dans le Web of Science WOS:001052992800001
Auteurs
Martinot P. L., Guigue Catherine, Chifflet Sandrine, Cuny P., Barani A., Didry M., Dignan C., Guyomarc'h L., Pradel Nathalie, Pringault Olivier, Van Wambeke F., Vu C. T., Mari Xavier, Tedetti Marc
Source
Science of the Total Environment, 2023, 901, 165802 [18 p.] [+ Corrigendum, vol. 904, 166251] ISSN 0048-9697
Here we investigated the bioavailability of black carbon (BC)-derived dissolved organic matter (DOM) for a natural mixed community of marine heterotrophic prokaryotes. We ran an in vitro biodegradation experiment that took place over 3 months and exposed a community of organisms collected in the northwestern Mediterranean Sea (Bay of Marseille, France) to three different soluble fractions of BC prepared in the laboratory from various fossil fuel combustion particulates: standard diesel (DREF), oxidized diesel (DREF-OX), and natural samples of ship soot (DSHIP). Over the course of the three months, we observed significant decreases in the concentrations of dissolved organic carbon (DOC; from 9 to 21 %), dissolved BC (DBC; from 22 to 38 %) and dissolved polycyclic aromatic hydrocarbons (d-PAH; from 24 to 64 %) along with variability in the growth dynamics and activity of the heterotrophic prokaryotic community. The heterotrophic prokaryotic community exposed to DREF-OX treatment showed the highest values of respiration and production and the highest cell abundance, associated with the highest decrease in DOC (21 %) and d-PAH (64 %) concentrations. In the DREF and DSHIP treatments, prokaryotic activity was oriented towards anabolism. DREF treatment led to the highest decrease in DBC concentration (38 %). DSHIP treatment, which presented a substantially different d-PAH and dissolved metals content to the other two treatments, showed the lowest decreases in DOC, DBC and d-PAH concentrations, as well as the lowest prokaryotic activity and biomasses. Our results indicate that BC-derived DOM, including the most condensed fraction of this material, is partly bioavailable and therefore likely to be assimilated by marine prokaryotes. The origin of BC/soot deposited at the ocean surface turns out to be a key parameter that dictates the efficiency of biodegradation of its dissolved fraction by heterotrophic prokaryotes.
Plan de classement
Sciences du milieu [021] ; Limnologie biologique / Océanographie biologique [034] ; Biotechnologies [084]
Description Géographique
MEDITERRANEE ; FRANCE
Localisation
Fonds IRD [F B010090136]
Identifiant IRD
fdi:010090136
Contact