@article{fdi:010086956, title = {{G}lobal {C}arbon {B}udget 2022}, author = {{F}riedlingstein, {P}. and {O}'{S}ullivan, {M}. and {J}ones, {M}. {W}. and {A}ndrew, {R}. {M}. and {G}regor, {L}. and {H}auck, {J}. and {L}e {Q}uere, {C}. and {L}uijkx, {I}. {T}. and {O}lsen, {A}. and {P}eters, {G}. {P}. and {P}eters, {W}. and {P}ongratz, {J}. and {S}chwingshackl, {C}. and {S}itch, {S}. and {C}anadell, {J}. {G}. and {C}iais, {P}. and {J}ackson, {R}. {B}. and {A}lin, {S}. {R}. and {A}lkama, {R}. and {A}rneth, {A}. and {A}rora, {V}. {K}. and {B}ates, {N}. {R}. and {B}ecker, {M}. and {B}ellouin, {N}. and {B}ittig, {H}. {C}. and {B}opp, {L}. and {C}hevallier, {F}. and {C}hini, {L}. {P}. and {C}ronin, {M}. and {E}vans, {W}. and {F}alk, {S}. and {F}eely, {R}. {A}. and {G}asser, {T}. and {G}ehlen, {M}. and {G}kritzalis, {T}. and {G}loege, {L}. and {G}rassi, {G}. and {G}ruber, {N}. and {G}urses, {O}. and {H}arris, {I}. and {H}efner, {M}. and {H}oughton, {R}. {A}. and {H}urtt, {G}. {C}. and {I}ida, {Y}. and {I}lyina, {T}. and {J}ain, {A}. {K}. and {J}ersild, {A}. and {K}adono, {K}. and {K}ato, {E}. and {K}ennedy, {D}. and {G}oldewijk, {K}. {K}. and {K}nauer, {J}. and {K}orsbakken, {J}. {I}. and {L}andschutzer, {P}. and {L}ef{\`e}vre, {N}athalie and {L}indsay, {K}. and {L}iu, {J}. {J}. and {L}iu, {Z}. and {M}arland, {G}. and {M}ayot, {N}. and {M}c{G}rath, {M}. {J}. and {M}etzl, {N}. and {M}onacci, {N}. {M}. and {M}unro, {D}. {R}. and {N}akaoka, {S}. {I}. and {N}iwa, {Y}. and {O}'{B}rien, {K}. and {O}no, {T}. and {P}almer, {P}. {I}. and {P}an, {N}. {Q}. and {P}ierrot, {D}. and {P}ocock, {K}. and {P}oulter, {B}. and {R}esplandy, {L}. and {R}obertson, {E}. and {R}odenbeck, {C}. and {R}odriguez, {C}. and {R}osan, {T}. {M}. and {S}chwinger, {J}. and {S}eferian, {R}. and {S}hutler, {J}. {D}. and {S}kjelvan, {I}. and {S}teinhoff, {T}. and {S}un, {Q}. and {S}utton, {A}. {J}. and {S}weeney, {C}. and {T}akao, {S}. and {T}anhua, {T}. and {T}ans, {P}. {P}. and {T}ian, {X}. {J}. and {T}ian, {H}. {Q}. and {T}ilbrook, {B}. and {T}sujino, {H}. and {T}ubiello, {F}. and van der {W}erf, {G}. {R}. and {W}alker, {A}. {P}. and {W}anninkhof, {R}. and {W}hitehead, {C}. and {W}ranne, {A}. {W}. and {W}right, {R}. and {Y}uan, {W}. {P}. and {Y}ue, {C}. and {Y}ue, {X}. and {Z}aehle, {S}. and {Z}eng, {J}. {Y}. and {Z}heng, {B}.}, editor = {}, language = {{ENG}}, abstract = {{A}ccurate assessment of anthropogenic carbon dioxide ({CO}2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. {H}ere we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. {F}ossil {CO}2 emissions ({E}-{FOS}) are based on energy statistics and cement production data, while emissions from land-use change ({E}-{LUC}), mainly deforestation, are based on land use and land-use change data and bookkeeping models. {A}tmospheric {CO}2 concentration is measured directly, and its growth rate ({G}({ATM})) is computed from the annual changes in concentration. {T}he ocean {CO}2 sink ({S}-{OCEAN}) is estimated with global ocean biogeochemistry models and observation-based data products. {T}he terrestrial {CO}2 sink ({S}-{LAND}) is estimated with dynamic global vegetation models. {T}he resulting carbon budget imbalance ({B}-{IM}), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. {A}ll uncertainties are reported as +/- 1 sigma. {F}or the year 2021, {EFOS} increased by 5.1% relative to 2020, with fossil emissions at 10.1 +/- 0.5 {G}t{C} yr(-1) (9.9 +/- 0.5 {G}t{C} yr(-1) when the cement carbonation sink is included), and {ELUC} was 1.1 +/- 0.7 {G}t{C} yr(-1),for a total anthropogenic {CO}2 emission (including the cement carbonation sink) of 10.9 +/- 0.8 {G}t{C} yr 1 (40.0 +/- 2.9 {G}t{CO}(2)). {A}lso, for 2021, {G}({ATM}) was 5.2 +/- 0.2 {G}t{C} yr(-1) (2.5 +/- 0.1 ppm yr(-1)), {S}-{OCEAN} was 2.9 +/- 0.4 {G}t{C} yr(-1), and {SLAND} was 3.5 +/- 0.9 {G}t{C} yr(-1), with a {B}-{IM} of 0.6 {G}t{C} yr(-1) (i.e. the total estimated sources were too low or sinks were too high). {T}he global atmospheric {CO}2 concentration averaged over 2021 reached 414.71 +/- 0.1 ppm. {P}reliminary data for 2022 suggest an increase in {E}-{FOS} relative to 2021 of +1.0% (0.1% to 1.9 %) globally and atmospheric {CO}2 concentration reaching 417.2 ppm, more than 50% above pre-industrial levels (around 278 ppm). {O}verall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959-2021, but discrepancies of up to 1 {G}t{C} yr(-1) persist for the representation of annual to semi-decadal variability in {CO}2 fluxes. {C}omparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land {CO}2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. {T}his living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. {T}he data presented in this work are available at https://doi.org/10.18160/{GCP}-2022 ({F}riedlingstein et al., 2022b).}, keywords = {{MONDE}}, booktitle = {}, journal = {{E}arth {S}ystem {S}cience {D}ata}, volume = {14}, numero = {11}, pages = {4811--4900}, ISSN = {1866-3508}, year = {2022}, DOI = {10.5194/essd-14-4811-2022}, URL = {https://www.documentation.ird.fr/hor/fdi:010086956}, }