Publications des scientifiques de l'IRD

Batista A. S., Oliveira S. D. S., Pomel S., Commere P. H., Mazan V., Lee M., Loiseau P. M., Rossi-Bergmann B., Prina E., Duval Romain. (2022). Targeting chalcone binding sites in living Leishmania using a reversible fluorogenic benzochalcone probe. Biomedicine and Pharmacotherapy, 149, 12784 [9 p.]. ISSN 0753-3322.

Titre du document
Targeting chalcone binding sites in living Leishmania using a reversible fluorogenic benzochalcone probe
Année de publication
2022
Type de document
Article référencé dans le Web of Science WOS:000912907400001
Auteurs
Batista A. S., Oliveira S. D. S., Pomel S., Commere P. H., Mazan V., Lee M., Loiseau P. M., Rossi-Bergmann B., Prina E., Duval Romain
Source
Biomedicine and Pharmacotherapy, 2022, 149, 12784 [9 p.] ISSN 0753-3322
Chalcones (1,3-diphenyl-2-propen-1-ones) either natural or synthetic have a plethora of biological properties including antileishmanial activities, but their development as drugs is hampered by their largely unknown mechanisms of action. We demonstrate herein that our previously described benzochalcone fluorogenic probe (HAB) could be imaged by fluorescence microscopy in live Leishmania amazonensis promastigotes where it targeted the parasite acidocalcisomes, lysosomes and the mitochondrion. As in the live zebrafish model, HAB formed yellow-emitting fluorescent complexes when associated with biological targets in Leishmania. Further, we used HAB as a reversible probe to study the binding of a portfolio of diverse chalcones and analogues in live promastigotes, using a combination of competitive flow cytometry analysis and cell microscopy. This pharmacological evaluation suggested that the binding of HAB in promastigotes was representative of chalcone pharmacology in Leishmania, with certain exogenous chalcones exhibiting competitive inhibition (ca. 20-30%) towards HAB whereas non-chalconic inhibitors showed weak capacity (ca. 3-5%) to block the probe intracellular binding. However, this methodology was restricted by the strong toxicity of several competing chalcones at high concentration, in conjunction with the limited sensitivity of the HAB fluorophore. This advocates for further optimization of this undirect target detection strategy using pharmacophore-derived reversible fluorescent probes.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Santé : généralités [050] ; Entomologie médicale / Parasitologie / Virologie [052]
Localisation
Fonds IRD [F B010086851]
Identifiant IRD
fdi:010086851
Contact