@article{fdi:010081283, title = {{A}mazon tree dominance across forest strata}, author = {{D}raper, {F}. {C}. and {C}osta, {F}. {R}. {C}. and {A}rellano, {G}. and {P}hillips, {O}. {L}. and {D}uque, {A}. and {M}acia, {M}. {J}. and ter {S}teege, {H}. and {A}sner, {G}. {P}. and {B}erenguer, {E}. and {S}chietti, {J}. and {S}ocolar, {J}. {B}. and de {S}ouza, {F}. {C}. and {D}exter, {K}. {G}. and {J}orgensen, {P}. {M}. and {T}ello, {J}. {S}. and {M}agnusson, {W}. {E}. and {B}aker, {T}. {R}. and {C}astilho, {C}. {V}. and {M}onteagudo-{M}endoza, {A}. and {F}ine, {P}. {V}. {A}. and {R}uokolainen, {K}. and {C}oronado, {E}. {N}. {H}. and {A}ymard, {G}. and {D}avila, {N}. and {S}aenz, {M}. {S}. and {P}aredes, {M}. {A}. {R}. and {E}ngel, {J}ulien and {F}ortunel, {C}laire and {P}aine, {C}. {E}. {T}. and {G}oret, {J}. {Y}. and {D}ourdain, {A}. and {P}etronelli, {P}. and {A}llie, {E}. and {A}ndino, {J}. {E}. {G}. and {B}rienen, {R}. {J}. {W}. and {P}erez, {L}. {C}. and {M}anzatto, {A}. {G}. and {Z}ambrana, {N}. {Y}. {P}. and {M}olino, {J}ean-{F}ran{\c{c}}ois and {S}abatier, {D}aniel and {C}have, {J}. and {F}auset, {S}. and {V}illacorta, {R}. {G}. and {R}{\'e}jou-{M}{\'e}chain, {M}axime and et al.,}, editor = {}, language = {{ENG}}, abstract = {{T}he forests of {A}mazonia are among the most biodiverse plant communities on {E}arth. {G}iven the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. {M}ost {A}mazonian tree species are extremely rare but a few are common across the region. {I}ndeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. {Y}et, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. {H}ere, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. {W}e further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. {O}ur results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in {A}mazonia. {M}ore generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of {A}mazonian forests across vertical strata and geographical locations. {M}ost {A}mazon tree species are rare but a small proportion are common across the region. {T}he authors show that different species are hyperdominant in different size classes and that hyperdominance is more phylogenetically restricted for larger canopy trees than for smaller understory ones.}, keywords = {}, booktitle = {}, journal = {{N}ature {E}cology and {E}volution}, volume = {[{E}arly access]}, numero = {}, pages = {[20 ]}, ISSN = {2397-334{X}}, year = {2021}, DOI = {10.1038/s41559-021-01418-y}, URL = {https://www.documentation.ird.fr/hor/fdi:010081283}, }