Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Laybros A., Schlapfer D., Feret J. B., Descroix L., Bedeau C., Lefevre M. J., Vincent Grégoire. (2019). Across date species detection using airborne imaging spectroscopy. Remote Sensing, 11 (7), art. 789 [24 p.] ISSN 2072-4292

Fichier PDF disponiblehttp://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers19-06/010075742.pdf[ PDF Link ]

Lien direct chez l'éditeur doi:10.3390/rs11070789

Titre
Across date species detection using airborne imaging spectroscopy
Année de publication2019
Type de documentArticle référencé dans le Web of Science WOS:000465549300054
AuteursLaybros A., Schlapfer D., Feret J. B., Descroix L., Bedeau C., Lefevre M. J., Vincent Grégoire.
SourceRemote Sensing, 2019, 11 (7), art. 789 [24 p.] ISSN 2072-4292
RésuméImaging spectroscopy is a promising tool for airborne tree species recognition in hyper-diverse tropical canopies. However, its widespread application is limited by the signal sensitivity to acquisition parameters, which may require new training data in every new area of application. This study explores how various pre-processing steps may improve species discrimination and species recognition under different operational settings. In the first experiment, a classifier was trained and applied on imaging spectroscopy data acquired on a single date, while in a second experiment, the classifier was trained on data from one date and applied to species identification on data from a different date. A radiative transfer model based on atmospheric compensation was applied with special focus on the automatic retrieval of aerosol amounts. The impact of spatial or spectral filtering and normalisation was explored as an alternative to atmospheric correction. A pixel-wise classification was performed with a linear discriminant analysis trained on individual tree crowns identified at the species level. Tree species were then identified at the crown scale based on a majority vote rule. Atmospheric corrections did not outperform simple statistical processing (i.e., filtering and normalisation) when training and testing sets were taken from the same flight date. However, atmospheric corrections became necessary for reliable species recognition when different dates were considered. Shadow masking improved species classification results in all cases. Single date classification rate was 83.9% for 1297 crowns of 20 tropical species. The loss of mean accuracy observed when using training data from one date to identify species at another date in the same area was limited to 10% when atmospheric correction was applied.
Plan de classementEtudes, transformation, conservation du milieu naturel [082] ; Sciences du monde végétal [076] ; Télédétection [126]
Descr. géo.GUYANE FRANCAISE ; ZONE TROPICALE
LocalisationFonds IRD [F B010075742]
Identifiant IRDfdi:010075742
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010075742

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


* PDF Link :

    à télécharger pour citer/partager ce document sur les réseaux sociaux académiques


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito