Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Duong T. T., Hoang T. T. H., Nguyen T. K., Le T. P. Q., Le N. D., Dang D. K., Lu X. X., Bui M. H., Trinh Q. H., Dinh T. H. V., Pham T. D., Rochelle-Newall Emma. (2019). Factors structuring phytoplankton community in a large tropical river : case study in the Red River (Vietnam). Limnologica, 76, 82-93. ISSN 0075-9511

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1016/j.limno.2019.04.003

Titre
Factors structuring phytoplankton community in a large tropical river : case study in the Red River (Vietnam)
Année de publication2019
Type de documentArticle référencé dans le Web of Science WOS:000468883700010
AuteursDuong T. T., Hoang T. T. H., Nguyen T. K., Le T. P. Q., Le N. D., Dang D. K., Lu X. X., Bui M. H., Trinh Q. H., Dinh T. H. V., Pham T. D., Rochelle-Newall Emma.
SourceLimnologica, 2019, 76, p. 82-93. ISSN 0075-9511
RésuméAlgal assemblages have been widely used as an ecological indicator of aquatic ecosystem health conditions because of their specific sensitivity to a wide variety of environmental conditions. In turbid rivers, as in other aquatic systems, phytoplankton structure plays an important role in structuring aquatic food webs. Worldwide, phytoplankton is less studied in turbid, large tropical rivers compared to temperate river systems. The present study aimed to describe the phytoplankton diversity and abundance in a turbid tropical river (the Red River, northern part of Vietnam from 20 degrees 00 to 25 degrees 30 North; from 100 degrees 00 to 107 degrees 10 East) and to determine the importance of a series of environmental variables in controlling the phytoplankton community composition. Phytoplankton community was composed of 169 phytoplankton taxa from six algal groups including Bacillariophyceae, Chlorophyceae, Cryptophyceae, Euglenophyceae, Dinophyceae and Cyanobacteria. Community composition varied both spatially and with season. Sixteen measurement environmental variables were used as input variables for a three-layer backpropagation neural network that was developed to predict the phytoplankton abundance. Phytoplankton abundance was successfully predicted using the tagsig transfer function and the Levenberg-Marquardt backpropagation algorithm. The network was trained to provide a good overall linear fit to the total data set with a slope (R) and mean square error (MSE) of 0.808 and 0.0107, respectively. The sensitivity analysis and neutral interpretation diagram revealed that total phosphorus (TP), flow discharge, water temperature and P-PO43- were the significant variables. The results showed that the developed ANN model was able to simulate phytoplankton abundance in the Red River. These findings can help for gaining insight into and the relationship between phytoplankton and environmental factors in this complex, turbid, tropical river.
Plan de classementEcologie, systèmes aquatiques [036]
Descr. géo.VIET NAM ; FLEUVE ROUGE
LocalisationFonds IRD [F B010075731]
Identifiant IRDfdi:010075731
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010075731

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito