Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Anschutz P., Bouchet S., Abril Gwenaël, Bridou R., Tessier E., Amouroux D. (2019). In vitro simulation of oscillatory redox conditions in intertidal sediments : N, Mn, Fe, and P coupling. Continental Shelf Research, 177, 33-41. ISSN 0278-4343

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1016/j.csr.2019.03.007

Titre
In vitro simulation of oscillatory redox conditions in intertidal sediments : N, Mn, Fe, and P coupling
Année de publication2019
Type de documentArticle référencé dans le Web of Science WOS:000464771500004
AuteursAnschutz P., Bouchet S., Abril Gwenaël, Bridou R., Tessier E., Amouroux D.
SourceContinental Shelf Research, 2019, 177, p. 33-41. ISSN 0278-4343
RésuméIn coastal environments, oscillating redox conditions represent a functional state affecting organic matter mineralization. Such transient diagenetic processes remain difficult to study in situ, and we therefore designed a specific reactor to provide experimental results that are environmentally relevant in this context. Here, we present the results of two independent experiments carried out with sediment having contrasting Fe, Mn contents, collected from a coastal tidal lagoon (the Arcachon bay) and a mesotidal estuary (Adour river). Sediment and overlying water were mixed to form slurries that were submitted to redox oscillations to assess the diagenetic mechanisms that affect N, P, Fe, Mn, and S. Changing from anoxic to oxic conditions, we observed a rapid oxidation of dissolved Fe(II) and dissolved inorganic phosphorus (DIP) was apparently trapped by the newly formed Fe-oxyhydroxides (Fe-ox). DIP was totally titrated in the coastal lagoon sediment, but not in estuarine sediment, where the initial amount of Fe available was lower. In both experiments, Mn(II) was only slowly oxidized during the oxidation events and a major part of Mn(II) was adsorbed on new Fe-ox. In coastal lagoon sediment, ammonium remained constant in oxic conditions while nitrate was produced from organic-N mineralization. On the contrary, in estuarine sediment, ammonium was quantitatively oxidized to nitrate. When the conditions became anoxic again, direct reduction of nitrate to ammonium occurred in coastal lagoon sediment. Anaerobic production of nitrate occurred in estuarine sediment, probably because Mn-oxides (Mn-ox), which had a high concentration, acted as an oxidant for ammonium. Consequently, nitrate production prevented Fe(II) accumulation. The Mn-N-Fe coupling outlined here is an apparent indirect oxidation of Fe(II) by Mn-ox through anaerobic nitrification (with Mn-ox) and denitrification (with Fe-ox). This coupling also implied P availability because of the strong control of P by Fe. These experimental results show that nutrient dynamics in oscillatory redox environments such as the estuarine turbidity zone, bioturbated sediment, or tidal permeable sediments highly depends on Mn-and Fe-ox availability.
Plan de classementLimnologie physique / Océanographie physique [032] ; Géologie et formations superficielles [064]
Descr. géo.FRANCE ; ARCACHON BAIE ; ADOUR ESTUAIRE
LocalisationFonds IRD [F B010075604]
Identifiant IRDfdi:010075604
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010075604

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito