Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

El Hourany R., Saab M. A. A., Faour G., Aumont Olivier, Crepon M., Thiria S. (2019). Estimation of secondary phytoplankton pigments from satellite observations using Self-Organizing Maps (SOMs). Journal of Geophysical Research : Oceans, 124 (2), 1357-1378. ISSN 2169-9275

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1029/2018jc014450

Titre
Estimation of secondary phytoplankton pigments from satellite observations using Self-Organizing Maps (SOMs)
Année de publication2019
Type de documentArticle référencé dans le Web of Science WOS:000461856400031
AuteursEl Hourany R., Saab M. A. A., Faour G., Aumont Olivier, Crepon M., Thiria S.
SourceJournal of Geophysical Research : Oceans, 2019, 124 (2), p. 1357-1378. ISSN 2169-9275
RésuméThis study presents a method for estimating secondary phytoplankton pigments from satellite ocean color observations. We first compiled a large training data set composed of 12,000 samples; each sample is composed of 10 in situ phytoplankton high-performance liquid chromatography (HPLC)-measured pigment concentrations, GlobColour products of chlorophyll-a concentration, and remote sensing reflectance (Rrs()) data at different wavelengths, in addition to advanced very high resolution radiometer sea surface temperature measurements. The resulting data set regroups a large variety of encountered situations between 1997 and 2014. The nonlinear relationship between the in situ and satellite components was identified using a self-organizing map, which is a neural network classifier. As a major result, the self-organizing map enabled reliable estimations of the concentration of chlorophyll-a and of nine different pigments from satellite observations. A cross-validation procedure showed that the estimations were robust for all pigments (R-2>0.75 and an average root-mean-square error=0.016mg/m(3)). A consistent association of several phytoplankton pigments indicating phytoplankton group specific dynamic was shown at a global scale. We also showed the uncertainties for the estimation of each pigment. Plain Language Summary The knowledge of phytoplankton variability is essential to the understanding of the marine ecosystem dynamics and its response to environmental changes. This paper presents a new approach to estimate phytoplankton pigment concentrations from satellite observations by using an artificial neural network, the so-called self-organizing map. This neural network was calibrated using a large data set of in situ pigment observations from oceanic cruises along with ocean color satellite data provided by the Globcolour project and advanced very high resolution radiometer sea surface temperature. This approach allows an accurate estimation of phytoplankton pigment concentrations and their related uncertainties. Moreover, the method allows to reproduce the spatio-temporal variability of pigment concentration and the dynamics of phytoplankton groups. A particular attention is given to the Southern Ocean whose phytoplankton communities are specific.
Plan de classementLimnologie physique / Océanographie physique [032] ; Ecologie, systèmes aquatiques [036] ; Télédétection [126]
LocalisationFonds IRD [F B010075513]
Identifiant IRDfdi:010075513
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010075513

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito