Publications des scientifiques de l'IRD

Dietrich Muriel, Markotter W. (2019). Studying the microbiota of bats : accuracy of direct and indirect samplings. Ecology and Evolution, 9 (4), p. 1730-1735. ISSN 2045-7758.

Titre du document
Studying the microbiota of bats : accuracy of direct and indirect samplings
Année de publication
2019
Type de document
Article référencé dans le Web of Science WOS:000461114900016
Auteurs
Dietrich Muriel, Markotter W.
Source
Ecology and Evolution, 2019, 9 (4), p. 1730-1735 ISSN 2045-7758
Given the recurrent bat-associated disease outbreaks in humans and recent advances in metagenomics sequencing, the microbiota of bats is increasingly being studied. However, obtaining biological samples directly from wild individuals may represent a challenge, and thus, indirect passive sampling (without capturing bats) is sometimes used as an alternative. Currently, it is not known whether the bacterial community assessed using this approach provides an accurate representation of the bat microbiota. This study was designed to compare the use of direct sampling (based on bat capture and handling) and indirect sampling (collection of bat's excretions under bat colonies) in assessing bacterial communities in bats. Using high-throughput 16S rRNA sequencing of urine and feces samples from Rousettus aegyptiacus, a cave-dwelling fruit bat species, we found evidence of niche specialization among different excreta samples, independent of the sampling approach. However, sampling approach influenced both the alpha- and beta-diversity of urinary and fecal microbiotas. In particular, increased alpha-diversity and more overlapping composition between urine and feces samples was seen when direct sampling was used, suggesting that cross-contamination may occur when collecting samples directly from bats in hand. In contrast, results from indirect sampling in the cave may be biased by environmental contamination. Our methodological comparison suggested some influence of the sampling approach on the bat-associated microbiota, but both approaches were able to capture differences among excreta samples. Assessment of these techniques opens an avenue to use more indirect sampling, in order to explore microbial community dynamics in bats.
Plan de classement
Sciences du monde animal [080] ; Biotechnologies [084]
Description Géographique
AFRIQUE DU SUD
Localisation
Fonds IRD [F B010075465]
Identifiant IRD
fdi:010075465
Contact