Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Shao Q., Fahs M., Hoteit H., Carrera J., Ackerer P., Younes Anis. (2018). A 3-D semianalytical solution for density-driven flow in porous media. Water Resources Research, 54 (12), 10094-10116. ISSN 0043-1397

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1029/2018wr023583

Titre
A 3-D semianalytical solution for density-driven flow in porous media
Année de publication2018
Type de documentArticle référencé dans le Web of Science WOS:000456949300005
AuteursShao Q., Fahs M., Hoteit H., Carrera J., Ackerer P., Younes Anis.
SourceWater Resources Research, 2018, 54 (12), p. 10094-10116. ISSN 0043-1397
RésuméExisting analytical and semianalytical solutions for density-driven flow (DDF) in porous media are limited to 2-D domains. In this work, we develop a semianalytical solution using the Fourier Galerkin method to describe DDF induced by salinity gradients in a 3-D porous enclosure. The solution is constructed by deriving the vector potential form of the governing equations and changing variables to obtain periodic boundary conditions. Solving the 3-D spectral system of equations can be computationally challenging. To alleviate computations, we develop an efficient approach, based on reducing the number of primary unknowns and simplifying the nonlinear terms, which allows us to simplify and solve the problem using only salt concentration as primary unknown. Test cases dealing with different Rayleigh numbers are solved to analyze the solution and gain physical insight into 3-D DDF processes. In fact, the solution displays a 3-D convective cell (actually a vortex) that resembles the quarter of a torus, which would not be possible in 2-D. Results also show that 3-D effects become more important at high Rayleigh number. We compare the semianalytical solution to research (Transport of RadioACtive Elements in Subsurface) and industrial (COMSOL Multiphysics (R)) codes. We show cases (high Raleigh number) where the numerical solution suffers from numerical artifacts, which highlight the worthiness of our semianalytical solution for code verification and benchmarking. In this context, we propose quantitative indicators based on several metrics characterizing the fluid flow and mass transfer processes and we provide open access to the source code of the semianalytical solution and to the corresponding numerical models.
Plan de classementHydrologie [062] ; Sciences fondamentales / Techniques d'analyse et de recherche [020]
LocalisationFonds IRD [F B010075163]
Identifiant IRDfdi:010075163
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010075163

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito