@article{fdi:010074829, title = {{M}odeling reproductive traits of an invasive bivalve species under contrasting climate scenarios from 1960 to 2100}, author = {{G}ourault, {M}. and {P}etton, {S}. and {T}homas, {Y}oann and {P}ecquerie, {L}aure and {M}arques, {G}. {M}. and {C}assou, {C}. and {F}leury, {E}. and {P}aulet, {Y}. {M}. and {P}ouvreau, {S}.}, editor = {}, language = {{ENG}}, abstract = {{I}dentifying the drivers that control the reproductive success of a population is vital to forecasting the consequences of climate change in terms of distribution shift and population dynamics. {I}n the present study, we aimed to improve our understanding of the environmental conditions that allowed the colonization of the {P}acific oyster, {C}rassostrea gigas, in the {B}ay of {B}rest since its introduction in the 1960s. {W}e also aimed to evaluate the potential consequences of future climate change on its reproductive success and further expansion. {T}hree reproductive traits were defined to study the success of the reproduction: the spawning occurrence, synchronicity among individuals and individual fecundity. {W}e simulated these traits by applying an individual-based modeling approach using a {D}ynamic {E}nergy {B}udget ({DEB}) model. {F}irst, the model was calibrated for {C}. gigas in the {B}ay of {B}rest using a 6-year monitoring dataset (2009-2014). {S}econd, we reconstructed past temperature conditions since 1960 in order to run the model backwards (hindcasting analysis) and identified the emergence of conditions that favored increasing reproductive success. {T}hird, we explored the regional consequences of two contrasting {IPCC} climate scenarios ({RCP}2.6 and {RCP}8.5) on the reproductive success of this species in the bay for the 2100 horizon (forecasting analysis). {I}n both analyses, since phytoplankton concentration variations were, at that point, unknown in the past and unpredicted in the future, we made an initial assumption that our six years of observed phytoplankton concentrations were informative enough to represent "past and future possibilities" of phytoplankton dynamics in the {B}ay of {B}rest. {T}herefore, temperature is the variable that we modified under each forecasting and hindcasting runs. {T}he hindcasting simulations showed that the spawning events increased after 1995, which agrees with the observations made on {C}. gigas colonization. {T}he forecasting simulations showed that under the warmer scenario ({RCP}8.5), reproductive success would be enhanced through two complementary mechanisms: more regular spawning each year and potentially precocious spawning resulting in a larval phase synchronized with the most favorable summer period. {O}ur results evidenced that the spawning dates and synchronicity between individuals mainly relied on phytoplankton seasonal dynamics, and not on temperature as expected. {F}uture research focused on phytoplankton dynamics under different climate change scenarios would greatly improve our ability to anticipate the reproductive success and population dynamics of this species and other similar invertebrates.}, keywords = {{DEB} model ; {IPCC} scenarios ; {R}eproductive traits ; {C}rassostrea gigas ; {B}ay of {B}rest ; {FRANCE} ; {ATLANTIQUE} ; {BREST} {BAIE}}, booktitle = {}, journal = {{J}ournal of {S}ea {R}esearch}, volume = {143}, numero = {{S}pecial {I}ssue}, pages = {128--139}, ISSN = {1385-1101}, year = {2019}, DOI = {10.1016/j.seares.2018.05.005}, URL = {https://www.documentation.ird.fr/hor/fdi:010074829}, }