Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Marques G. M., Lika K., Augustine S., Pecquerie Laure, Kooijman S. A. L. M. (2019). Fitting multiple models to multiple data sets. Journal of Sea Research, 143 (Special Issue), 48-56. ISSN 1385-1101

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1016/j.seares.2018.07.004

Titre
Fitting multiple models to multiple data sets
Année de publication2019
Type de documentArticle référencé dans le Web of Science WOS:000453497600006
AuteursMarques G. M., Lika K., Augustine S., Pecquerie Laure, Kooijman S. A. L. M.
SourceJournal of Sea Research, 2019, 143 (Special Issue), p. 48-56. ISSN 1385-1101
RésuméDynamic Energy Budget (DEB) theory constitutes a coherent set of universal biological processes that have been used as building blocks for modeling biological systems over the last 40 years in many applied disciplines. In the context of extracting parameters for DEB models from data, we discuss the methodology of fitting multiple models, which share parameters, to multiple data sets in a single parameter estimation. This problem is not specific to DEB models, and is (or should be) really general in biology. We discovered that a lot of estimation problems that we suffered from in the past originated from the use of a loss function that was not symmetric in the role of data and predictions. We here propose two much better symmetric candidates, that proved to work well in practice. We illustrate estimation problems and their solutions with a Monte-Carlo case study for increasing amount of scatter, which decreased the amount of information in the data about one or more parameter values. We here validate the method using a set of models with known parameters and different scatter structures. We compare the loss functions on the basis of convergence, point and interval estimates. We also discuss the use of pseudo-data, i.e. realistic values for parameters that we treat as data from which predictions can differ. These pseudo-data are used to avoid that a good fit results in parameter values that make no biological sense. We discuss our new method for estimating confidence intervals and present a list of concrete recommendations for parameter estimation. We conclude that the proposed method performs very well in recovering parameter values of a set of models, applied to a set of data. This is consistent with our large-scale applications in practice.
Plan de classementSciences fondamentales / Techniques d'analyse et de recherche [020] ; Ecologie, systèmes aquatiques [036]
LocalisationFonds IRD [F B010074828]
Identifiant IRDfdi:010074828
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010074828

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito