Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Ogilvie Andrew, Belaud G., Massuel Sylvain, Mulligan M., Le Goulven Patrick, Malaterre P. O., Calvez Roger. (2018). Combining Landsat observations with hydrological modelling for improved surface water monitoring of small lakes. Journal of Hydrology, 566, 109-121. ISSN 0022-1694

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1016/j.jhydrol.2018.08.076

Titre
Combining Landsat observations with hydrological modelling for improved surface water monitoring of small lakes
Année de publication2018
Type de documentArticle référencé dans le Web of Science WOS:000449901100008
AuteursOgilvie Andrew, Belaud G., Massuel Sylvain, Mulligan M., Le Goulven Patrick, Malaterre P. O., Calvez Roger.
SourceJournal of Hydrology, 2018, 566, p. 109-121. ISSN 0022-1694
RésuméSmall reservoirs represent a critical water supply to millions of farmers across semi-arid regions, but their hydrological modelling suffers from data scarcity and highly variable and localised rainfall intensities. Increased availability of satellite imagery provide substantial opportunities but the monitoring of surface water resources is constrained by the small size and rapid flood declines in small reservoirs. To overcome remote sensing and hydrological modelling difficulties, the benefits of combining field data, numerical modelling and satellite observations to monitor small reservoirs were investigated. Building on substantial field data, coupled daily rainfall-runoff and water balance models were developed for 7 small reservoirs (1-10 ha) in semi arid Tunisia over 1999-2014. Surface water observations from MNDWI classifications on 546 Landsat TM, ETM + and OLI sensors were used to update model outputs through an Ensemble (n = 100) Kalman Filter over the 15 year period. The Ensemble Kalman Filter, providing near-real time corrections, reduced runoff errors by modulating incorrectly modelled rainfall events, while compensating for Landsat's limited temporal resolution and correcting classification outliers. Validated against long term hydrometric field data, daily volume root mean square errors (RMSE) decreased by 54% to 31200 m(3) across 7 lakes compared to the initial model forecast. The method reproduced the amplitude and timing of major floods and their decline phases, providing a valuable approach to improve hydrological monitoring (NSE increase from 0.64 up to 0.94) of flood dynamics in small water bodies. In the smallest and data-scarce lakes, higher temporal and spatial resolution time series are essential to improve monitoring accuracy.
Plan de classementTélédétection [126] ; Hydrologie [062]
Descr. géo.TUNISIE ; ZONE SEMIARIDE
LocalisationFonds IRD [F B010074463]
Identifiant IRDfdi:010074463
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010074463

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito