Horizon / Plein textes La base de ressources documentaires de l'IRD



Publications des scientifiques de l'IRD

Aires F., Prigent C., Fluet-Chouinard E., Yamazaki D., Papa Fabrice, Lehner B. (2018). Comparison of visible and multi-satellite global inundation datasets at high-spatial resolution. Remote Sensing of Environment, 216, 427-441. ISSN 0034-4257

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1016/j.rse.2018.06.015

Comparison of visible and multi-satellite global inundation datasets at high-spatial resolution
Année de publication2018
Type de documentArticle référencé dans le Web of Science WOS:000445990100030
AuteursAires F., Prigent C., Fluet-Chouinard E., Yamazaki D., Papa Fabrice, Lehner B.
SourceRemote Sensing of Environment, 2018, 216, p. 427-441. ISSN 0034-4257
RésuméSeveral new satellite-derived and long-term surface water datasets at high-spatial resolution have recently become available at the global scale, showing different characteristics and abilities. They are either based on visible imagery from Landsat - the Global 3-second Water Body Map (G3WBM) and the Global Surface Water Explorer (GSWE) - or on the merging of passive/active microwave and visible observations - Global Inundation Extent from Multi-Satellite (GIEMS-D3) - that has been downscaled from a native resolution of 25 km x 25 km to the 90 m x 90 m resolution. The objective of this paper is to perform a thorough comparison of the different water surface estimates in order to identify the advantages and disadvantages of the two approaches and propose a strategy for future developments of high-resolution surface water databases. Results show that due to their very high spatial resolution (30 m) the Landsat-based datasets are well suited to retrieve open water surfaces, even at very small size. GIEMS-D3 has a better ability to detect water under vegetation and during the cloudy season, and it shows larger seasonal dynamics. However, its current version overestimates surface water extent on water-saturated soils, and due to its low original (i.e. before downscaling) spatial resolution, it is under-performing at detecting small water bodies. The permanent waters for G3WBM, GSWE, GIEMS-D3 and GLWD represent respectively: 2.76, 2.05, 3.28, and 3.04 million km(2). The transitory waters shows larger discrepancies: 0.48, 3.72, 10.39 and 8.81 million km(2). Synthetic Aperture Radar (SAR) data (from ENVIronment SATellite (ENVISAT), Sentinel and soon the Surface Water Ocean Topography (SWOT)) would be a good complementary information because they have a high nominal spatial resolution and are less sensitive to clouds than visible measurements. However, global SAR datasets are still not available due to difficulties in developing a retrieval scheme adequate at the global scale. In order to improve our estimates of global wetland extents at high resolution and over long-term records, three interim lines of action are proposed: (1) extend the temporal record of GIEMS-D3 to exploit the full time series of microwave observations (from 1978 to present), (2) develop an approach to fuse the GSWE and GIEMS-D3 datasets leveraging the strengths of both, and (3) prepare for the release of SAR global datasets.
Plan de classementTélédétection [126] ; Hydrologie [062]
LocalisationFonds IRD [F B010074140]
Identifiant IRDfdi:010074140
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010074140

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL

Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation


Montpellier (centre IRD)

Montpellier (MSE)









La Paz