Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

Publications des scientifiques de l'IRD

Ogilvie Andrew, Belaud G., Massuel Sylvain, Mulligan M., Le Goulven Patrick, Calvez Roger. (2018). Surface water monitoring in small water bodies : potential and limits of multi-sensor Landsat time series. Hydrology and Earth System Sciences, 22 (8), 4349-4380. ISSN 1027-5606

Fichier PDF disponible http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers18-09/010073763.pdf

Lien direct chez l'éditeur doi:10.5194/hess-22-4349-2018

Titre
Surface water monitoring in small water bodies : potential and limits of multi-sensor Landsat time series
Année de publication2018
Type de documentArticle référencé dans le Web of Science WOS:000442118900001
AuteursOgilvie Andrew, Belaud G., Massuel Sylvain, Mulligan M., Le Goulven Patrick, Calvez Roger.
SourceHydrology and Earth System Sciences, 2018, 22 (8), p. 4349-4380. ISSN 1027-5606
RésuméHydrometric monitoring of small water bodies (110 ha) remains rare, due to their limited size and large numbers, preventing accurate assessments of their agricultural potential or their cumulative influence in watershed hydrology. Landsat imagery has shown its potential to support mapping of small water bodies, but the influence of their limited surface areas, vegetation growth, and rapid flood dynamics on long-term surface water monitoring remains unquantified. A semi-automated method is developed here to assess and optimize the potential of multi-sensor Landsat time series to monitor surface water extent and mean water availability in these small water bodies. Extensive hydrometric field data (1999-2014) for seven small reservoirs within the Merguellil catchment in central Tunisia and SPOT imagery are used to calibrate the method and explore its limits. The Modified Normalised Difference Water Index (MNDWI) is shown out of six commonly used water detection indices to provide high overall accuracy and threshold stability during high and low floods, leading to a mean surface area error below 15 %. Applied to 546 Landsat 5, 7, and 8 images over 19992014, the method reproduces surface water extent variations across small lakes with high skill (R-2 = 0.9) and a mean root mean square error (RMSE) of 9300m(2). Comparison with published global water datasets reveals a mean RMSE of 21 800m(2) (+ 134 %) on the same lakes and highlights the value of a tailored MNDWI approach to improve hydrological monitoring in small lakes and reduce omission errors of flooded vegetation. The rise in relative errors due to the larger proportion and influence of mixed pixels restricts surface water monitoring below 3 ha with Landsat (Normalised RMSE = 27 %). Interferences from clouds and scan line corrector failure on ETM+ after 2003 also decrease the number of operational images by 51 %, reducing performance on lakes with rapid flood declines. Combining Landsat observations with 10m pansharpened Sentinel-2 imagery further reduces RMSE to 5200m(2), displaying the increased opportunities for surface water monitoring in small water bodies after 2015.
Plan de classementHydrologie [062] ; Télédétection [126]
Descr. géo.TUNISIE ; ZONE SEMIARIDE ; MERGUELLIL BASSIN VERSANT
LocalisationFonds IRD [F B010073763]
Identifiant IRDfdi:010073763
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010073763

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Nouméa

Papeete

Niamey

Ouagadougou

Tunis

La Paz

Quito