@article{fdi:010073197, title = {{T}he biological pump and seasonal variability of p{CO}(2) in the {S}outhern {O}cean : exploring the role of diatom adaptation to low iron}, author = {{P}erson, {R}. and {A}umont, {O}livier and {L}{\'e}vy, {M}arina}, editor = {}, language = {{ENG}}, abstract = {{I}ron is known to limit primary production in the {S}outhern {O}cean ({SO}). {T}o cope with the lack of this micronutrient, diatoms, a dominant phytoplankton group in this oceanic region, have been shown in cultures to have developed an original adaptation strategy to maintain efficient growth rates despite very low cellular iron quotas, even in low light conditions. {U}sing a global ocean biogeochemical model, we explored the consequences of this physiological adaptation for the biological pump and the seasonal variability of both surface chlorophyll concentrations and surface partial pressure of carbon dioxide (p{CO}(2)) in this key region for global climate. {I}n the model, we implemented a low intracellular {F}e:{C} requirement in the {SO} for diatoms uniquely. {T}his results in an increase of 10% in the relative contribution of diatoms to total {SO} primary production. {T}he biological pump is also strengthened, which increases the biological contribution to the seasonal evolution of p{CO}(2) relative to the thermodynamic component. {T}herefore, the seasonal evolution of both surface chlorophyll and surface p{CO}(2) is significantly impacted, with a marked improvement, in our model, in the {SO} polar zone compared to the observations. {O}ur model study underscores the potentially important consequences that this adaptive physiological behavior of diatoms could have on marine biogeochemistry in the {SO}. {I}t is thus critical to improve our understanding of the physiology of this key phytoplankton group, in particular in the {SO}.}, keywords = {{S}outhern {O}cean ; diatoms ; physiological adaptation ; biological pump ; p{CO}(2) ; seasonal variability ; {OCEAN} {AUSTRAL}}, booktitle = {}, journal = {{J}ournal of {G}eophysical {R}esearch : {O}ceans}, volume = {123}, numero = {5}, pages = {3204--3226}, ISSN = {2169-9275}, year = {2018}, DOI = {10.1029/2018jc013775}, URL = {https://www.documentation.ird.fr/hor/fdi:010073197}, }