@article{fdi:010073145, title = {{T}he roots of the drought : hydrology and water uptake strategies mediate forest-wide demographic response to precipitation}, author = {{C}hitra-{T}arak, {R}. and {R}uiz, {L}aurent and {D}attaraja, {H}. {S}. and {K}umar, {M}. {S}. {M}. and {R}iotte, {J}ean and {S}uresh, {H}. {S}. and {M}c{M}ahon, {S}. {M}. and {S}ukumar, {R}.}, editor = {}, language = {{ENG}}, abstract = {1. {D}rought-induced tree mortality is expected to increase globally due to climate change, with profound implications for forest composition, function and global climate feedbacks. {H}ow drought is experienced by different species is thought to depend fundamentally on where they access water vertically below-ground, but this remains untracked so far due to the difficulty of measuring water availability at depths at which plants access water (few to several tens of metres), the broad temporal scales at which droughts at those depths unfold (seasonal to decadal), and the difficulty in linking these patterns to forest-wide species-specific demographic responses. 2. {W}e address this problem through a new eco-hydrological framework: we used a hydrological model to estimate below-ground water availability by depth over a period of two decades that included a multi-year drought. {G}iven this water availability scenario and 20year long-records of species-specific growth patterns, we inversely estimated the relative depths at which 12 common species in the forest accessed water via a model of water stress. {F}inally, we tested whether our estimates of species relative uptake depths predicted mortality in the multi-year drought. 3. {T}he hydrological model revealed clear below-ground niches as precipitation was decoupled from water availability by depth at multi-annual scale. {S}pecies partitioned the hydrological niche by diverging in their uptake depths and so in the same forest stand, different species experienced very different drought patterns, resulting in clear differences in species-specific growth. {F}inally, species relative water uptake depths predicted species mortality patterns after the multi-year drought. {S}pecies that our method ranked as relying on deeper water were the ones that had suffered from greater mortality, as the zone from which they access water took longer to recharge after depletion. 4. {S}ynthesis. {T}his research changes our understanding of how hydrological niches operate for trees, with a trade-off between realized growth potential and survival under drought with decadal scale return time. {T}he eco-hydrological framework highlights the importance of species-specific below-ground strategies in predicting forest response to drought. {A}pplying this framework more broadly may help us better understand species coexistence in diverse forest communities and improve mechanistic predictions of forests productivity and compositional change under future climate.}, keywords = {climate change ; decoupling ; drought ; evolutionary strategies ; hydrological niche segregation ; mortality ; rooting depth ; seasonally dry ; tropical forest ; temporal niche ; {INDE}}, booktitle = {}, journal = {{J}ournal of {E}cology}, volume = {106}, numero = {4}, pages = {1495--1507}, ISSN = {0022-0477}, year = {2018}, DOI = {10.1111/1365-2745.12925}, URL = {https://www.documentation.ird.fr/hor/fdi:010073145}, }