@article{fdi:010072440, title = {{A}reas prone to slow slip events impede earthquake rupture propagation and promote afterslip}, author = {{R}olandone, {F}r{\'e}d{\'e}rique and {N}ocquet, {J}ean-{M}athieu and {M}othes, {P}. {A}. and {J}arrin, {P}. and {V}all{\'e}e, {M}artin and {C}ubas, {N}. and {H}ernandez, {S}. and {P}lain, {M}. and {V}aca, {S}. and {F}ont, {Y}vonne}, editor = {}, language = {{ENG}}, abstract = {{A}t subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. {A}fterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. {C}ontinuous {GPS} ({G}lobal {P}ositioning {S}ystem) measurements following the 2016 {M}-w (moment magnitude) 7.8 {E}cuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. {R}egardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes.}, keywords = {{EQUATEUR}}, booktitle = {}, journal = {{S}cience {A}dvances}, volume = {4}, numero = {1}, pages = {eaao6596 [8p.]}, ISSN = {2375-2548}, year = {2018}, DOI = {10.1126/sciadv.aao6596}, URL = {https://www.documentation.ird.fr/hor/fdi:010072440}, }