Assimilation of deformation data for eruption forecasting : potentiality assessment based on synthetic cases - fdi:010071971 - Horizon

Horizon / Plein textes La base de ressources documentaires de l'IRD


Publications des scientifiques de l'IRD

Bato M. G., Pinel Virginie, Yan Y. J. (2017). Assimilation of deformation data for eruption forecasting : potentiality assessment based on synthetic cases. Frontiers in Earth Science, 5, art. 48 [23 p.]. ISSN 2296-6463

Fichier PDF disponible

Lien direct chez l'éditeur doi:10.3389/feart.2017.00048

Assimilation of deformation data for eruption forecasting : potentiality assessment based on synthetic cases
Année de publication2017
Type de documentArticle référencé dans le Web of Science WOS:000419337800001
AuteursBato M. G., Pinel Virginie, Yan Y. J.
SourceFrontiers in Earth Science, 2017, 5, p. art. 48 [23 p.]. p. art. 48 [23 p.] ISSN 2296-6463
RésuméIn monitoring active volcanoes, the magma overpressure is one of the key parameters used in forecasting volcanic eruptions. This parameter can be inferred from the ground displacements measured on the Earth's surface by applying inversion techniques. However, in most studies, the huge amount of information about the behavior of the volcano contained in the temporal evolution of the deformation signal is not fully exploited by inversion. Our work focuses on developing a strategy in order to better forecast the magma overpressure using data assimilation. We take advantage of the increasing amount of geodetic data [i.e., Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS)] recorded on volcanoes nowadays together with the wide-range availability of dynamical models that can provide better understanding about the volcano plumbing system. Here, we particularly built our strategy on the basis of the Ensemble Kalman Filter (EnKF). We forecast the temporal behaviors of the magma overpressures and surface deformations by adopting a simple and generic two-magma chamber model and by using synthetic GNSS and/or InSAR data. We prove the ability of EnKF to both estimate the magma pressure evolution and constrain the characteristics of the deep volcanic system (i.e., reservoir size as well as basal magma inflow). High temporal frequency of observation is required to ensure the success of EnKF and the quality of assimilation is also improved by increasing the spatial density of observations in the near-field. We thus show that better results are obtained by combining a few GNSS temporal series of high temporal resolution with InSAR images characterized by a good spatial coverage. We also show that EnKF provides similar results to sophisticated Bayesian-based inversion while using the same dynamical model with the advantage of EnKF to potentially account for the temporal evolution of the uncertain model parameters. Our results show that EnKF works well with the synthetic cases and there is a great potential in using the method for real-time monitoring of volcanic unrest.
Plan de classementGéophysique interne [066] ; Géologie et formations superficielles [064] ; Sciences fondamentales / Techniques d'analyse et de recherche [020]
LocalisationFonds IRD [F B010071971]
Identifiant IRDfdi:010071971
Lien permanent

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL

Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation


Montpellier (centre IRD)

Montpellier (MSE)






La Paz