Horizon / Plein textes La base de ressources documentaires de l'IRD


Publications des scientifiques de l'IRD

Mangiarotti Sylvain, Sharma A. K., Corgne S., Hubert-Moy L., Ruiz Laurent, Sekhar M., Kerr Y. (2018). Can the global modeling technique be used for crop classification ?. Chaos Solitons and Fractals, 106, 363-378. ISSN 0960-0779

Accès réservé (Intranet IRD) Document en accès réservé (Intranet IRD)

Lien direct chez l'éditeur doi:10.1016/j.chaos.2017.12.003

Can the global modeling technique be used for crop classification ?
Année de publication2018
Type de documentArticle référencé dans le Web of Science WOS:000418932800048
AuteursMangiarotti Sylvain, Sharma A. K., Corgne S., Hubert-Moy L., Ruiz Laurent, Sekhar M., Kerr Y.
SourceChaos Solitons and Fractals, 2018, 106, p. 363-378. ISSN 0960-0779
RésuméCrop detection from remote sensed images is of major interest for land use and land cover mapping. Classification techniques often require multi-temporal images. However, most of these techniques assume that the cultural cycle occurs at the same dates across plots or for a given crop and do not take into account the sensitivity to initial conditions of the dynamical behaviors. Such hypotheses are not well adapted when a wide diversity of practices is observed for the same crops from one crop field to another, which is often the case in tropical context. To cope with these difficulties, a new classification technique based on the global modeling technique is introduced in this paper. It is first applied to a case study based on chaotic oscillators. It is then tested on crop classification observed from satellite data. The Berambadi watershed (South India) is taken as a case study to test this new classification approach. Crop classification is a difficult problem in Southern India where optical satellite images are scarce during the monsoon season due to cloud cover, and where crop land is divided in parcels (i.e. crop fields) of very small sizes with diversified crops. The Landsat-8 images were used to monitor an ensemble of 104 parcels of ten different crops (irrigated and non-irrigated). Using global modeling, a bank of crop models was first obtained for the ten crops considered in the study. A metric is introduced to compare the observed signal to the obtained crop-models used as reference for each crop dynamic. Based on this metric, the possibility to use global models as references for distinguishing crops is investigated. The results provide a good proof-of-concept and show promising potential for crop classification.
Plan de classementSciences fondamentales / Techniques d'analyse et de recherche [020] ; Sciences du monde végétal [076] ; Télédétection [126]
Descr. géo.INDE
LocalisationFonds IRD [F B010071932]
Identifiant IRDfdi:010071932
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010071932

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL

Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation


Montpellier (centre IRD)

Montpellier (MSE)









La Paz