Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

Publications des scientifiques de l'IRD

Mara T. A., Fajraoui N., Guadagnini A., Younes Anis. (2017). Dimensionality reduction for efficient Bayesian estimation of groundwater flow in strongly heterogeneous aquifers. Stochastic Environmental Research and Risk Assessment, 31 (9), 2313-2326. ISSN 1436-3240

Accès réservé (Intranet IRD) Document en accès réservé (Intranet IRD)

Lien direct chez l'éditeur doi:10.1007/s00477-016-1344-1

Titre
Dimensionality reduction for efficient Bayesian estimation of groundwater flow in strongly heterogeneous aquifers
Année de publication2017
Type de documentArticle référencé dans le Web of Science WOS:000414782800010
AuteursMara T. A., Fajraoui N., Guadagnini A., Younes Anis.
SourceStochastic Environmental Research and Risk Assessment, 2017, 31 (9), p. 2313-2326. ISSN 1436-3240
RésuméWe focus on the Bayesian estimation of strongly heterogeneous transmissivity fields conditional on data sampled at a set of locations in an aquifer. Log-transmissivity, Y, is modeled as a stochastic Gaussian process, parameterized through a truncated Karhunen-LoSve (KL) expansion. We consider Y fields characterized by a short correlation scale as compared to the size of the observed domain. These systems are associated with a KL decomposition which still requires a high number of parameters, thus hampering the efficiency of the Bayesian estimation of the underlying stochastic field. The distinctive aim of this work is to present an efficient approach for the stochastic inverse modeling of fully saturated groundwater flow in these types of strongly heterogeneous domains. The methodology is grounded on the construction of an optimal sparse KL decomposition which is achieved by retaining only a limited set of modes in the expansion. Mode selection is driven by model selection criteria and is conditional on available data of hydraulic heads and (optionally) Y. Bayesian inversion of the optimal sparse KLE is then inferred using Markov Chain Monte Carlo (MCMC) samplers. As a test bed, we illustrate our approach by way of a suite of computational examples where noisy head and Y values are sampled from a given randomly generated system. Our findings suggest that the proposed methodology yields a globally satisfactory inversion of the stochastic head and Y fields. Comparison of reference values against the corresponding MCMC predictive distributions suggests that observed values are well reproduced in a probabilistic sense. In a few cases, reference values at some unsampled locations (typically far from measurements) are not captured by the posterior probability distributions. In these cases, the quality of the estimation could be improved, e.g., by increasing the number of measurements and/or the threshold for the selection of KL modes.
Plan de classementSciences fondamentales / Techniques d'analyse et de recherche [020] ; Hydrologie [062]
LocalisationFonds IRD [F B010071366]
Identifiant IRDfdi:010071366
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010071366

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Nouméa

Papeete

Niamey

Ouagadougou

Tunis

La Paz

Quito