Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

Publications des scientifiques de l'IRD

Beaugendre N., Issa O. M., Chone A., Cerdan O., Desprats J. F., Rajot Jean-Louis, Sannier C., Valentin Christian. (2017). Developing a predictive environment-based model for mapping biological soil crust patterns at the local scale in the Sahel. Catena, 158, 250-265. ISSN 0341-8162

Accès réservé (Intranet IRD) Document en accès réservé (Intranet IRD)

Lien direct chez l'éditeur doi:10.1016/j.catena.2017.06.010

Titre
Developing a predictive environment-based model for mapping biological soil crust patterns at the local scale in the Sahel
Année de publication2017
Type de documentArticle référencé dans le Web of Science WOS:000412252200025
AuteursBeaugendre N., Issa O. M., Chone A., Cerdan O., Desprats J. F., Rajot Jean-Louis, Sannier C., Valentin Christian.
SourceCatena, 2017, 158, p. 250-265. ISSN 0341-8162
RésuméSeveral studies have demonstrated the great range of possibilities offered by remote sensing in identifying, estimating and mapping biological soil crust (BSC) patterns, i.e. a feature recognised to play major functions in drylands. However those techniques are suitable mainly where BSC patterns are abundant ( > 30%) and vegetation cover low (< 10%), otherwise reflectance values matched different levels of BSCs mixed with vegetation and bare soil surfaces. This study developed an alternative methodology in mapping BSC presence in areas with a wide range of BSC cover associated with different mosaics encompassing vegetation and bare surfaces in the Sahel. Data were collected during intensive field surveys and remote sensing imagery of two typical Sahelian watersheds in western Niger (Banizoumbou and Tamou). Statistical methods were used to explore relationships between BSC occurrence and abundance and key environmental factors (rainfall, land use, land cover, vegetation, physical crusts). A predictive model of BSC spatial distribution was developed based on logistic regressions. This model allowed predicting and mapping BSC occurrence in areas where BSC cover ranged from 0 to 65% at Tamou (15% in average) and 1 to 48% at Banizoumbou (4% in average) and where vegetation cover ranged from < 1% to > 75%. Predicted values were obtained with an overall accuracy of 77.7% (kappa = 0.54), classifying the model as good and discriminant. This work is the first step in assessing the local scale ecological functions of BSC. Further work is needed for extrapolation at the regional scale in order to provide a useful tool for ecological surveys and for predictions of soil surface dynamics related to global changes in dryland areas.
Plan de classementPédologie [068] ; Télédétection [126] ; Informatique [122]
Descr. géo.NIGER ; SAHEL
LocalisationFonds IRD [F B010071066]
Identifiant IRDfdi:010071066
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010071066

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Nouméa

Papeete

Niamey

Ouagadougou

Tunis

La Paz

Quito