Horizon / Plein textes La base de ressources documentaires de l'IRD



Publications des scientifiques de l'IRD

Tavakoli B., Operto S., Ribodetti Alessandra, Virieux J. (2017). Slope tomography based on eikonal solvers and the adjoint-state method. Geophysical Journal International, 209 (3), 1629-1647. ISSN 0956-540X

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1093/gji/ggx111

Slope tomography based on eikonal solvers and the adjoint-state method
Année de publication2017
Type de documentArticle référencé dans le Web of Science WOS:000408374300021
AuteursTavakoli B., Operto S., Ribodetti Alessandra, Virieux J.
SourceGeophysical Journal International, 2017, 209 (3), p. 1629-1647. ISSN 0956-540X
RésuméVelocity macromodel building is a crucial step in the seismic imaging workflow as it provides the necessary background model for migration or full waveform inversion. In this study, we present a new formulation of stereotomography that can handle more efficiently long-offset acquisition, complex geological structures and large-scale data sets. Stereotomography is a slope tomographic method based upon a semi-automatic picking of local coherent events. Each local coherent event, characterized by its two-way traveltime and two slopes in common-shot and common-receiver gathers, is tied to a scatterer or a reflector segment in the subsurface. Ray tracing provides a natural forward engine to compute traveltime and slopes but can suffer from non-uniform ray sampling in presence of complex media and long-offset acquisitions. Moreover, most implementations of stereotomography explicitly build a sensitivity matrix, leading to the resolution of large systems of linear equations, which can be cumbersome when large-scale data sets are considered. Overcoming these issues comes with a new matrix-free formulation of stereotomography: a factored eikonal solver based on the fast sweeping method to compute first-arrival traveltimes and an adjoint-state formulation to compute the gradient of the misfit function. By solving eikonal equation from sources and receivers, we make the computational cost proportional to the number of sources and receivers while it is independent of picked events density in each shot and receiver gather. The model space involves the subsurface velocities and the scatterer coordinates, while the dips of the reflector segments are implicitly represented by the spatial support of the adjoint sources and are updated through the joint localization of nearby scatterers. We present an application on the complex Marmousi model for a towed-streamer acquisition and a realistic distribution of local events. We show that the estimated model, built without any prior knowledge of the velocities, provides a reliable initial model for frequency-domain FWI of long-offset data for a starting frequency of 4 Hz, although some artefacts at the reservoir level result from a deficit of illumination. This formulation of slope tomography provides a computationally efficient alternative to waveform inversion method such as reflection waveform inversion or differential-semblance optimization to build an initial model for pre-stack depth migration and conventional FWI.
Plan de classementGéophysique interne [066] ; Sciences fondamentales / Techniques d'analyse et de recherche [020]
LocalisationFonds IRD [F B010070980]
Identifiant IRDfdi:010070980
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010070980

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL

Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation


Montpellier (centre IRD)

Montpellier (MSE)









La Paz