Publications des scientifiques de l'IRD

Whitt D. B., Taylor J. R., Levy Marina. (2017). Synoptic-to-planetary scale wind variability enhances phytoplankton biomass at ocean fronts. Journal of Geophysical Research. Oceans, 122 (6), p. 4602-4633. ISSN 2169-9275.

Titre du document
Synoptic-to-planetary scale wind variability enhances phytoplankton biomass at ocean fronts
Année de publication
2017
Type de document
Article référencé dans le Web of Science WOS:000407088800008
Auteurs
Whitt D. B., Taylor J. R., Levy Marina
Source
Journal of Geophysical Research. Oceans, 2017, 122 (6), p. 4602-4633 ISSN 2169-9275
In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4-16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Limnologie physique / Océanographie physique [032] ; Ecologie, systèmes aquatiques [036]
Localisation
Fonds IRD [F B010070878]
Identifiant IRD
fdi:010070878
Contact