Publications des scientifiques de l'IRD

Chevallier M., Smith G. C., Dupont F., Lemieux J. F., Forget G., Fujii Y., Hernandez Fabrice, Msadek R., Peterson K. A., Storto A., Toyoda T., Valdivieso M., Vernieres G., Zuo H., Balmaseda M., Chang Y. S., Ferry N., Garric G., Haines K., Keeley S., Kovach R. M., Kuragano T., Masina S., Tang Y. M., Tsujino H., Wang X. C. (2017). Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses from the ORA-IP project [+ Erratum]. In : Balmaseda M. (ed.). Ocean estimation from an ensemble of global ocean reanalyses. Climate Dynamics, 49 (3 (No spécial)), p. 1107-1136 +2. ISSN 0930-7575.

Titre du document
Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses from the ORA-IP project [+ Erratum]
Année de publication
2017
Type de document
Article référencé dans le Web of Science WOS:000407244700020
Auteurs
Chevallier M., Smith G. C., Dupont F., Lemieux J. F., Forget G., Fujii Y., Hernandez Fabrice, Msadek R., Peterson K. A., Storto A., Toyoda T., Valdivieso M., Vernieres G., Zuo H., Balmaseda M., Chang Y. S., Ferry N., Garric G., Haines K., Keeley S., Kovach R. M., Kuragano T., Masina S., Tang Y. M., Tsujino H., Wang X. C.
In
Balmaseda M. (ed.), Ocean estimation from an ensemble of global ocean reanalyses
Source
Climate Dynamics, 2017, 49 (3 (No spécial)), p. 1107-1136 +2 ISSN 0930-7575
Ocean-sea ice reanalyses are crucial for assessing the variability and recent trends in the Arctic sea ice cover. This is especially true for sea ice volume, as long-term and large scale sea ice thickness observations are inexistent. Results from the Ocean ReAnalyses Intercomparison Project (ORA-IP) are presented, with a focus on Arctic sea ice fields reconstructed by state-of-the-art global ocean reanalyses. Differences between the various reanalyses are explored in terms of the effects of data assimilation, model physics and atmospheric forcing on properties of the sea ice cover, including concentration, thickness, velocity and snow. Amongst the 14 reanalyses studied here, 9 assimilate sea ice concentration, and none assimilate sea ice thickness data. The comparison reveals an overall agreement in the reconstructed concentration fields, mainly because of the constraints in surface temperature imposed by direct assimilation of ocean observations, prescribed or assimilated atmospheric forcing and assimilation of sea ice concentration. However, some spread still exists amongst the reanalyses, due to a variety of factors. In particular, a large spread in sea ice thickness is found within the ensemble of reanalyses, partially caused by the biases inherited from their sea ice model components. Biases are also affected by the assimilation of sea ice concentration and the treatment of sea ice thickness in the data assimilation process. An important outcome of this study is that the spatial distribution of ice volume varies widely between products, with no reanalysis standing out as clearly superior as compared to altimetry estimates. The ice thickness from systems without assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. An evaluation of the sea ice velocity fields reveals that ice drifts too fast in most systems. As an ensemble, the ORA-IP reanalyses capture trends in Arctic sea ice area and extent relatively well. However, the ensemble can not be used to get a robust estimate of recent trends in the Arctic sea ice volume. Biases in the reanalyses certainly impact the simulated air-sea fluxes in the polar regions, and questions the suitability of current sea ice reanalyses to initialize seasonal forecasts.
Plan de classement
Sciences du milieu [021] ; Limnologie physique / Océanographie physique [032] ; Hydrologie [062]
Localisation
Fonds IRD [F B010070866]
Identifiant IRD
fdi:010070866
Contact