Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

Publications des scientifiques de l'IRD

Tymen B., Vincent Grégoire, Courtois E. A., Heurtebize J., Dauzat J., Marechaux I., Chave J. (2017). Quantifying micro-environmental variation in tropical rainforest understory at landscape scale by combining airborne LiDAR scanning and a sensor network. Annals of Forest Science, 74 (2), art. 32 [13 p.]. ISSN 1286-4560

Accès réservé (Intranet IRD) Document en accès réservé (Intranet IRD)

Lien direct chez l'éditeur doi:10.1007/s13595-017-0628-z

Titre
Quantifying micro-environmental variation in tropical rainforest understory at landscape scale by combining airborne LiDAR scanning and a sensor network
Année de publication2017
Type de documentArticle référencé dans le Web of Science WOS:000405798400002
AuteursTymen B., Vincent Grégoire, Courtois E. A., Heurtebize J., Dauzat J., Marechaux I., Chave J.
SourceAnnals of Forest Science, 2017, 74 (2), p. art. 32 [13 p.]. p. art. 32 [13 p.] ISSN 1286-4560
RésuméKey message We combined aerial LiDAR and ground sensors to map the spatial variation in micro-environmental variables of the tropical forest understory. We show that thesemetrics depend on forest type and proximity to canopy gaps. Our study has implications for the study of natural forest regeneration. Context Light impacts seedling dynamics and animals, either directly or through their effect on air temperature and relative humidity. However, the micro-environment of tropical forest understories is heterogeneous. Aims We explored whether aerial laser scanning (LiDAR) can describe short-scale micro-environmental variables. We also studied the determinants of their spatial and intra-annual variation. Methods We used a small-footprint LiDAR coverage combined with data obtained from 47 environmental sensors monitoring continuously understory light, moisture and temperature during 1 year over the area. We developed and tested twomodels relating micro-environmental conditions to LiDAR metrics. Results We found that a volume-based model predicts empirical light fluxes better than a model based on the proportion of the LiDAR signal reaching the ground. Understory field sensors measured an average daily light flux between 2.9 and 4.7% of full sunlight. Relative seasonal variation was comparable in the understory and in clearings. In canopy gaps, light flux was 4.3 times higher, maximal temperature 15% higher and minimal relative humidity 25% lower than in the forest understory. We found consistent micro-environmental differences among forest types. Conclusions LiDAR coverage improves the fine-scale description of micro-environmental variables of tropical forest understories. This opens avenues for modelling the distribution and dynamics of animal and plant populations.
Plan de classementEtudes, transformation, conservation du milieu naturel [082] ; Sciences du monde végétal [076] ; Télédétection [126]
Descr. géo.GUYANE FRANCAISE
LocalisationFonds IRD [F B010070354]
Identifiant IRDfdi:010070354
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010070354

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Nouméa

Papeete

Niamey

Ouagadougou

Tunis

La Paz

Quito