%0 Journal Article %9 ACL : Articles dans des revues avec comité de lecture répertoriées par l'AERES %A Fragoso, C. A. %A Moreno, M. %A Wang, Z. H. %A Heffelfinger, C. %A Arbelaez, L. J. %A Aguirre, J. A. %A Franco, N. %A Romero, L. E. %A Labadie, K. %A Zhao, H. Y. %A Dellaporta, S. L. %A Lorieux, Mathias %T Genetic architecture of a rice nested association mapping population %D 2017 %L fdi:010070213 %G ENG %J G3-Genes Genomes Genetics %@ 2160-1836 %K QTL mapping ; computational biology ; genetic maps ; nested association ; mapping ; plant genomics %M ISI:000403075000027 %N 6 %P 1913-1926 %R 10.1534/g3.117.041608 %U https://www.documentation.ird.fr/hor/fdi:010070213 %> https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers17-07/010070213.pdf %V 7 %W Horizon (IRD) %X Describing the genetic diversity in the gene pool of crops will provide breeders with novel resources for varietal improvement. Nested Association Mapping (NAM) populations are uniquely suited for characterizing parental diversity through the shuffling and fixation of parental haplotypes. Here, we describe a set of 1879 rice NAM lines created through the selfing and single-seed descent of F-1 hybrids derived from elite IR64 indica crossed with 10 diverse tropical japonica lines. Genotyping data indicated tropical japonica alleles were captured at every queried locus despite the presence of segregation distortion factors. Several distortion loci were mapped, both shared and unique, among the 10 populations. Using two-point and multi-point genetic map calculations, our datasets achieved the similar to 1500 cM expected map size in rice. Finally, we highlighted the utility of the NAM lines for QTL mapping, including joint analysis across the 10 populations, by confirming known QTL locations for the trait days to heading. %$ 076 ; 020